Neuropeptide Y: a novel renal peptide with vasoconstrictor and natriuretic activity

1985 ◽  
Vol 68 (4) ◽  
pp. 373-377 ◽  
Author(s):  
J. M. Allen ◽  
A. E. G. Raine ◽  
J. G. G. Ledingham ◽  
S. R. Bloom

1. A novel vasoconstrictor peptide, neuropeptide Y (NPY), has been identified in considerable quantities in the renal artery and kidney. Within the kidney, NPY was confined to the cortex and corticomedullary interface, the regions where the juxtaglomerular apparatus is most numerous. 2. In the isolated perfused rat kidney, NPY caused a prompt dose-dependent increase in perfusion pressure and reduction in flow, with only a small fall in glomerular filtration rate (GFR). In spite of the reduced renal perfusion, a dose-dependent natriuresis was observed. This response contrasts to the response of this preparation to noradrenaline, which causes sodium reabsorption. 3. The presence of a potent vasoconstrictor and natriuretic peptide within the rat renovascular system suggests that it may play a significant role in the control of renal function.

2000 ◽  
Vol 279 (3) ◽  
pp. R1025-R1034 ◽  
Author(s):  
Yuwaraj K. Narnaware ◽  
Pierre P. Peyon ◽  
Xinwei Lin ◽  
Richard E. Peter

In mammals, neuropeptide Y (NPY) is a potent orexigenic factor. In the present study, third brain ventricle (intracerebroventricular) injection of goldfish NPY (gNPY) caused a dose-dependent increase in food intake in goldfish, and intracerebroventricular administration of NPY Y1-receptor antagonist BIBP-3226 decreased food intake; the actions of gNPY were blocked by simultaneous injection of BIBP-3226. Goldfish maintained on a daily scheduled feeding regimen display an increase in NPY mRNA levels in the telencephalon-preoptic area and hypothalamus shortly before feeding; however, a decrease occured in optic tectum-thalamus. In both fed and unfed fish, brain NPY mRNA levels decreased after scheduled feeding. Restriction in daily food ration intake for 1 wk or food deprivation for 72 h resulted in increased brain NPY mRNA levels. Results from these studies demonstrate that NPY is a physiological brain signal involved in feeding behavior in goldfish, mediating its effects, at least in part, through Y1-like receptors in the brain.


1997 ◽  
Vol 273 (2) ◽  
pp. F307-F314 ◽  
Author(s):  
R. Loutzenhiser ◽  
L. Chilton ◽  
G. Trottier

An adaptation of the in vitro perfused hydronephrotic rat kidney model allowing in situ measurement of arteriolar membrane potentials is described. At a renal perfusion pressure of 80 mmHg, resting membrane potentials of interlobular arteries (22 +/- 2 microns) and afferent (14 +/- 1 microns) and efferent arterioles (12 +/- 1 microns) were -40 +/- 2 (n = 8), -40 +/- 1 (n = 45), and -38 +/- 2 mV (n = 22), respectively (P = 0.75). Using a dual-pipette system to stabilize the impalement site, we measured afferent and efferent arteriolar membrane potentials during angiotensin II (ANG II)-induced vasoconstriction. ANG II (0.1 nM) reduced afferent arteriolar diameters from 13 +/- 1 to 8 +/- 1 microns (n = 8, P = 0.005) and membrane potentials from -40 +/- 2 to -29 +/- mV (P = 0.012). ANG II elicited a similar vasoconstriction in efferent arterioles, decreasing diameters from 13 +/- 1 to 8 +/- 1 microns (n = 8, P = 0.004), but failed to elicit a significant depolarization (-39 +/- 2 for control; -36 +/- 3 mV for ANG II; P = 0.27). Our findings thus indicate that resting membrane potentials of pre- and postglomerular arterioles are similar and lie near the threshold activation potential for L-type Ca channels. ANG II-induced vasoconstriction appears to be closely coupled to membrane depolarization in the afferent arteriole, whereas mechanical and electrical responses appear to be dissociated in the efferent arteriole.


1992 ◽  
Vol 263 (5) ◽  
pp. F886-F893 ◽  
Author(s):  
E. W. Inscho ◽  
K. Ohishi ◽  
L. G. Navar

Based on evidence that extracellular ATP can influence vascular smooth muscle function in other organ systems, experiments were conducted to characterize the responsiveness of rat juxtamedullary microvascular segments to ATP. Experiments were performed using the in vitro blood-perfused juxtamedullary nephron preparation combined with video microscopy. Pentobarbital-anesthetized rats were pretreated with enalaprilat (2 mg iv) for 30 min before the right kidney was isolated and prepared for study. Renal perfusion pressure was set at 110 mmHg and held constant. Under control conditions, afferent and efferent arteriolar diameters averaged 19.9 +/- 1.4 (n = 19) and 21.6 +/- 1.2 microns (n = 10), respectively. Superfusion with 1, 10, and 100 microM ATP solutions induced sustained dose-dependent afferent vasoconstriction of 8.3 +/- 1.4, 12.8 +/- 1.7, and 12.1 +/- 2.1%, respectively (P < 0.01). Afferent vasoconstrictor responses to ATP were also observed during adenosine receptor blockade. In contrast, efferent arterioles were unresponsive to ATP stimulation even at concentrations as high as 100 microM (P > 0.05). Arcuate and interlobular arterial diameters averaged 82.0 +/- 15.7 (n = 5) and 43.4 +/- 4.5 microns (n = 6), respectively, during control conditions and responded to ATP treatment with a transient vasoconstriction followed by a gradual return to control diameter. Interlobular arteries exhibited a sustained constriction only at the 100 microM concentration (P < 0.05). These data demonstrate that afferent arterioles are more responsive to ATP treatment than other renal microvascular segments and suggest the presence of ATP-sensitive P2x purinoceptors on pre- but not postglomerular juxtamedullary microvascular elements.


1984 ◽  
Vol 246 (6) ◽  
pp. F828-F834 ◽  
Author(s):  
L. I. Kleinman ◽  
R. O. Banks

Pressure natriuresis was studied in anesthetized saline-expanded adult (n = 10) and neonatal (n = 23) dogs. One group (protocol B) received ethacrynic acid and amiloride to block distal nephron function. Studies in the other group (protocol A) were done without diuretics. Renal arterial blood pressure was raised by bilateral carotid artery occlusion. Renal perfusion pressure was then lowered in steps by partially occluding the aorta proximal to the renal arteries. In protocol B carotid occlusion was associated with an increase in both absolute and fractional sodium excretion by adult and newborn dogs. Moreover, there was significant negative correlation (P less than 0.01) between absolute change in renal arterial pressure and change in tubular reabsorption of sodium per milliliter glomerular filtrate for both age groups. For each mmHg increase in blood pressure there was greater inhibition of sodium reabsorption in the puppy (0.55 mueq/ml glomerular filtrate) than in the adult (0.18 mueq/ml, P less than 0.05). In protocol A puppies, the inhibition of sodium reabsorption due to increases in renal perfusion pressure was less than that occurring in protocol B, indicating that some of the sodium escaping proximal nephron reabsorption was reabsorbed distally. Results of these studies indicate that during saline expansion pressure natriuresis is primarily a proximal tubular event, and the sensitivity of the proximal tubule to changes in renal arterial blood pressure is greater in the newborn than the adult kidney.


1986 ◽  
Vol 250 (3) ◽  
pp. F425-F429 ◽  
Author(s):  
J. A. Haas ◽  
J. P. Granger ◽  
F. G. Knox

Previous studies in rats have demonstrated that superficial proximal tubule sodium reabsorption does not change in response to alterations in renal perfusion pressure (RPP). The first objective of the present study was to estimate sodium reabsorption in response to acute changes in RPP utilizing fractional lithium reabsorption (FRLi) as an index of fractional sodium reabsorption (FRNa) by the proximal tubule of the kidney as a whole. FRLi decreased in response to increases in RPP, suggesting that sodium reabsorption by the proximal tubule of some nephron population is decreased. Therefore, the second objective of the present study was to test the hypothesis that superficial and deep proximal tubules respond differently to changes in RPP by comparing proximal tubule sodium reabsorption from both nephron populations. In response to an acute change in RPP from 114 +/- 4 to 138 +/- 5 mmHg, FRNa by the proximal tubule and descending limb of Henle's loop in deep nephrons decreased from 71.3 +/- 2.3 to 55.8 +/- 5.6%, but FRNa by the superficial late proximal tubule was not changed: (44.3 +/- 4.8 to 45.1 +/- 3.9%). The urinary fractional reabsorption of sodium decreased from 96.7 +/- 0.6 to 94.5 +/- 0.5%. In summary, these studies demonstrate that increases in RPP have no effect on sodium reabsorption by the proximal tubule of superficial nephrons. In contrast, sodium delivery to the point of micropuncture in the descending limb of Henle's loop of deep nephrons was increased, suggesting inhibition of sodium reabsorption by proximal tubules of deep nephrons in response to increases in RPP.


1995 ◽  
Vol 269 (6) ◽  
pp. F793-F805 ◽  
Author(s):  
H. M. Bosse ◽  
R. Bohm ◽  
S. Resch ◽  
S. Bachmann

Four chronic experiments were performed to assess changes in the activity and gene expression of type I nitric oxide synthase (NOS) at the macula densa (MD) and of renin expression and immunoreactivity (IR) at the juxtaglomerular apparatus (JGA) of rat kidney, as follows: 1) two-kidney, one-clip Goldblatt hypertension (2K1C, for 3 and 40 days; sham operation for controls), 2) furosemide treatment (150 mg/kg-1.day-1 ip for 5 days), 3) chronic low-salt diet (0.02%) vs. high-salt diet (3%; both for 11 days), and 4) chronic blockade of NOS by nitro-L-arginine methyl ester (L-NAME, 40 mg.kg-1.day-1 for 2 mo). NOS and renin gene expression, NOS enzyme activity and renin IR were semiquantitatively evaluated with histochemical methods (NADPH diaphorase, in situ hybridization, immunohistochemistry). In 2K1C, marked increases were induced in NOS and renin in the ischemic vs. contralateral kidneys both after 3 and 40 days, respectively (P < 0.05). Related to controls, significant increases in the ischemic kidney were encountered after 3 and 40 days, whereas contralateral suppression of NOS and renin was found only after 40 days. Furosemide treatment resulted in a marked increase of both NOS and renin levels compared with controls (P < 0.05). Salt restriction induced a significant elevation of NOS levels compared with salt loading (P < 0.05), whereas only minor changes were evident in renin levels. L-NAME treatment resulted in a moderate reduction of NOS activity (not significant), whereas renin levels were markedly reduced (P < 0.05). These results show that NOS activity and gene expression are inversely related to chronic changes in renal perfusion, salt balance, and salt transport at the distal tubule in parallel with the known response of renin to these changes. Inhibition of NOS decreases renin levels at the JGA. The histochemical findings support previous concepts that MD-derived NO is involved in the control of renin synthesis.


2002 ◽  
Vol 282 (5) ◽  
pp. R1436-R1442 ◽  
Author(s):  
Hideki Tanioka ◽  
Koichi Nakamura ◽  
Shinsei Fujimura ◽  
Makoto Yoshida ◽  
Mizue Suzuki-Kusaba ◽  
...  

We examined modulation by nitric oxide (NO) of sympathetic neurotransmitter release and vasoconstriction in the isolated pump-perfused rat kidney. Electrical renal nerve stimulation (RNS; 1 and 2 Hz) increased renal perfusion pressure and renal norepinephrine (NE) efflux. Nonselective NO synthase (NOS) inhibitors [ N ω-nitro-l-arginine methyl ester (l-NAME) or N ω-nitro-l-arginine], but not a selective neuronal NO synthase inhibitor (7-nitroindazole sodium salt), suppressed the NE efflux response and enhanced the perfusion pressure response. Pretreatment with l-arginine prevented the effects of l-NAME on the RNS-induced responses. 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), which eliminates NO by oxidizing it to NO2, suppressed the NE efflux response, whereas the perfusion pressure response was less susceptible to carboxy-PTIO. 8-Bromoguanosine cGMP suppressed and a guanylate cyclase inhibitor [4 H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b)(1,4)oxazin-1-one] enhanced the RNS-induced perfusion pressure response, but neither of these drugs affected the NE efflux response. These results suggest that endogenous NO facilitates the NE release through cGMP-independent mechanisms, NO metabolites formed after NO2 rather than NO itself counteract the vasoconstriction, and neuronal NOS does not contribute to these modulatory mechanisms in the sympathetic nervous system of the rat kidney.


1988 ◽  
Vol 255 (3) ◽  
pp. F391-F396 ◽  
Author(s):  
J. D. Firth ◽  
A. E. Raine ◽  
J. G. Ledingham

The effect of alteration in renal perfusion pressure on the response of the isolated perfused rat kidney to concentrations of alpha-human atrial natriuretic peptide (ANP) within the pathophysiological range has been examined. At a perfusion pressure of 90 mmHg ANP concentrations of 50, 200, and 1,000 pmol/l were without effect on any parameter tested. At a perfusion pressure of 130 mmHg 50 pmol/l ANP produced an increase of 3.13 +/- 0.68 mumol/min in sodium excretion (UNa V), compared with a fall of 0.33 +/- 1.04 mumol/min in controls (P less than 0.02); fractional excretion of sodium (FENa) rose by 1.45 +/- 0.36% vs. -0.12 +/- 0.47% (P less than 0.05); glomerular filtration rate (GFR) was unchanged. At 200 and 1,000 pmol/l larger changes in UNa V and FENa were seen; only at 1,000 pmol/l was a significant effect on GFR observed. In contrast, frusemide (furosemide) at concentrations of 10 and 100 mumol/l was natriuretic at both 90 and 130 mmHg, with lesser absolute but greater proportional changes being seen at the lower pressure. It was concluded 1) the response of the isolated kidney to ANP is critically dependent on perfusion pressure, 2) at elevated levels of perfusion pressure the isolated kidney can respond to levels of ANP within the upper physiological and pathophysiological range.


1984 ◽  
Vol 66 (6) ◽  
pp. 71P.2-71P
Author(s):  
J M Allen ◽  
J C Yeats ◽  
K Darcy ◽  
A Savage ◽  
S R Bloom

Sign in / Sign up

Export Citation Format

Share Document