Glucocorticoids and blood pressure: a role for the cortisol/cortisone shuttle in the control of vascular tone in man

1992 ◽  
Vol 83 (2) ◽  
pp. 171-178 ◽  
Author(s):  
Brian R. Walker ◽  
Alan A. Connacher ◽  
David J. Webb ◽  
Christopher R.W. Edwards

1. 11β-Hydroxysteroid dehydrogenase converts cortisol to inactive cortisone in man. In distal renal tubules, this inactivation protects mineralocorticoid receptors from cortisol. Congenital 11β-hydroxysteroid dehydrogenase deficiency and inhibition of 11β-hydroxysteroid dehydrogenase by liquorice or carbenoxolone result in cortisol-dependent hypokalaemia and hypertension. 2. 11β-Hydroxysteroid dehydrogenase is expressed in vascular smooth muscle. Both glucocorticoids and mineralocorticoids potentiate vascular responses to noradrenaline. 11β-Hydroxysteroid dehydrogenase activity may therefore influence vascular tone. 3. Experiments were performed in healthy subjects with and without 7 days of oral administration of 11β-hydroxysteroid dehydrogenase inhibitors (liquorice or carbenoxolone), and in a patient with congenital 11β-hydroxysteroid dehydrogenase deficiency. We measured the following parameters: dermal vasoconstriction after topical application of cortisol, forearm blood flow during brachial artery infusion of cortisol or noradrenaline, and blood pressure during systemic infusion of noradrenaline. 4. Cortisol-induced dermal vasoconstriction was increased by liquorice (23 ± 6 to 52 ± 7 units; P<0.04) and in congenital 11β-hydroxysteroid dehydrogenase deficiency (87 units). In congenital 11β-hydroxysteroid dehydrogenase deficiency intraarterial infusion of cortisol caused vasoconstriction (20% reduction in blood flow in the infused arm) and accentuated the response to application of lower-body negative pressure, which stimulates sympathetically mediated vasoconstriction (35% reduction). However, intra-arterial infusion of cortisol had no effect in healthy subjects either with or without administration of liquorice. 5. Carbenoxolone potentiated both noradrenaline-induced forearm vasoconstriction (P<0.01) and pressor response (P<0.001). 6. We conclude that 11β-hydroxysteroid dehydrogenase modulates the access of cortisol to vascular receptors and thereby influences vascular sensitivity to noradrenaline. Complementary to its role in kidney, 11β-hydroxysteroid dehydrogenase could influence blood pressure by this mechanism, which may underlie our observations of impairment of 11β-hydroxysteroid dehydrogenase and increased dermal vascular sensitivity to cortisol in patients with essential hypertension.

2019 ◽  
Vol 89 (1-2) ◽  
pp. 5-12
Author(s):  
Alon Harris ◽  
Brent Siesky ◽  
Amelia Huang ◽  
Thai Do ◽  
Sunu Mathew ◽  
...  

Abstract. Introduction: To investigate the effects of a lutein complex supplementation on ocular blood flow in healthy subjects. Materials and Methods: Sixteen healthy female patients (mean age 36.8 ± 12.1 years) were enrolled in this randomized, placebo-controlled, double-blinded, two-period crossover study. Subjects received daily an oral dose of the lutein with synergistic phytochemicals complex (lutein (10 mg), ascorbic acid (500 mg), tocopherols (364 mg), carnosic acid (2.5 mg), zeaxanthin (2 mg), copper (2 mg), with synergistic effects in reducing pro-inflammatory mediators and cytokines when administered together in combination) and placebo during administration periods. Measurements were taken before and after three-week supplementation periods, with crossover visits separated by a three-week washout period. Data analysis included blood pressure, heart rate, intraocular pressure, visual acuity, contrast sensitivity detection, ocular perfusion pressure, confocal scanning laser Doppler imaging of retinal capillary blood flow, and Doppler imaging of the retrobulbar blood vessels. Results: Lutein complex supplementation produced a statistically significant increase in mean superior retinal capillary blood flow, measured in arbitrary units (60, p = 0.0466) and a decrease in the percentage of avascular area in the superior (−0.029, p = 0.0491) and inferior (−0.023, p = 0.0477) retina, as well as reduced systolic (−4.06, p = 0.0295) and diastolic (−3.69, p = 0.0441) blood pressure measured in mmHg from baseline. Data comparison between the two supplement groups revealed a significant decrease in systemic diastolic blood pressure (change from pre- to post-treatment with lutein supplement (mean (SE)): −3.69 (1.68); change from pre- to post-treatment with placebo: 0.31 (2.57); p = 0.0357) and a significant increase in the peak systolic velocity (measured in cm/sec) in the central retinal artery (change from pre- to post-treatment with lutein supplement: 0.36 (0.19); change from pre- to post-treatment with placebo: −0.33 (0.21); p = 0.0384) with lutein complex supplement; data analyses from the placebo group were all non-significant. Discussion: In healthy participants, oral administration of a lutein phytochemicals complex for three weeks produced increased ocular blood flow biomarkers within retinal vascular beds and reduced diastolic blood pressure compared to placebo.


1994 ◽  
Vol 77 (6) ◽  
pp. 2761-2766 ◽  
Author(s):  
S. W. Mittelstadt ◽  
L. B. Bell ◽  
K. P. O'Hagan ◽  
P. S. Clifford

Previous studies have shown that the muscle chemoreflex causes an augmented blood pressure response to exercise and partially restores blood flow to ischemic muscle. The purpose of this study was to investigate the effects of the muscle chemoreflex on blood flow to nonischemic exercising skeletal muscle. During each experiment, dogs ran at 10 kph for 8–16 min and the muscle chemoreflex was evoked by reducing hindlimb blood flow at 4-min intervals (0–80%). Arterial blood pressure, hindlimb blood flow, forelimb blood flow, and forelimb vascular conductance were averaged over the last minute at each level of occlusion. Stimulation of the muscle chemoreflex caused increases in arterial blood pressure and forelimb blood flow and decreases in forelimb vascular conductance. The decrease in forelimb vascular conductance demonstrates that the muscle chemoreflex causes vasoconstriction in the nonischemic exercising forelimb. Despite the decrease in vascular conductance, the increased driving pressure caused by the pressor response was large enough to produce an increased forelimb blood flow.


Healthcare ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 342
Author(s):  
Abdulrahman Alsubiheen ◽  
Jerrold Petrofsky ◽  
Wonjong Yu ◽  
Haneul Lee

The purpose of this study was to investigate the effects of Tai Chi (TC) training combined with mental imagery (MI) on blood pressure and cutaneous microcirculatory function in individuals with diabetes and age-matched healthy subjects. All subjects participated in a one-hour Yang style TC exercise with MI twice per week for 8 weeks. An activities-specific balance confidence (ABC) measurement, a single-leg stance (SLS), a functional reach test (FRT), systolic and diastolic blood pressure, and skin blood flow were assessed. All functional outcomes were significantly improved in both groups, and systolic and diastolic blood pressures were lower in both groups after the TC training (p < 0.05), but there was no significant group effect. Skin blood flow decreased in the age-matched elderly group when heat and occlusion were applied (p < 0.05), but no difference was found in the diabetes group. Combining TC with MI showed an improvement in functional outcomes and blood pressure but cutaneous microcirculatory function did not improve. Combining TC intervention with MI theory showed an improvement in functional outcomes and blood pressure, which showed cardiovascular benefits not only in diabetes but in age-matched healthy subjects. However, cutaneous microcirculatory function was increased only in age-matched healthy subjects.


2006 ◽  
Vol 291 (4) ◽  
pp. H1768-H1772 ◽  
Author(s):  
C. T. Paul Krediet ◽  
Johannes J. van Lieshout ◽  
Lysander W. J. Bogert ◽  
Rogier V. Immink ◽  
Yu-Sok Kim ◽  
...  

Vasovagal syncope is the most common cause of transient loss of consciousness, and recurrent vasovagal fainting has a profound impact on quality of life. Physical countermaneuvers are applied as a means of tertiary prevention but have so far only proven useful at the onset of a faint. This placebo-controlled crossover study tested the hypothesis that leg crossing increases orthostatic tolerance. Nine naïve healthy subjects [6 females, median age 25 yr (range 20–41 yr), mean body mass index 23 (SD 2)] were subjected to passive head-up tilt combined with a graded lower body negative pressure challenge (20, 40, and 60 mmHg) determining orthostatic tolerance thrice, in randomized order: 1) control, 2) with leg crossing, and 3) with oral placebo. Blood pressure (Finometer), heart rate, and changes in thoracic blood volume (impedance), stroke volume, and cardiac output (Modelflow) were followed during orthostatic stress. Primary outcome was time to presyncope (systolic blood pressure ≤85 mmHg, heart rate ≥140 beats/min). With leg crossing, orthostatic tolerance increased from 26 ± 2 to 34 ± 2 min (placebo 23 ± 3 min, P < 0.001). During leg crossing, mean arterial pressure (81 vs. 81 mmHg) and cardiac output (95 vs. 94% supine) remained unchanged; heart rate increase was lower (13 vs. 18 beats/min, P < 0.05); stroke volume was higher (79 vs. 74% supine, P < 0.05); and there was a trend toward lower thoracic impedance. Leg crossing increases orthostatic tolerance in healthy human subjects. As a measure of prevention, it is a worthwhile addition to the management of vasovagal syncope.


2014 ◽  
Vol 307 (7) ◽  
pp. R908-R913 ◽  
Author(s):  
Daniel Gagnon ◽  
R. Matthew Brothers ◽  
Matthew S. Ganio ◽  
Jeffrey L. Hastings ◽  
Craig G. Crandall

Facial pallor is commonly observed at presyncope in humans, suggestive of reductions in facial skin blood flow (SkBF). Yet, cutaneous vasoconstriction is usually minimal at presyncope when measured at the forearm. We tested the hypothesis that reductions in forehead SkBF at presyncope are greater than in the forearm. Forehead and forearm SkBF (laser-Doppler) and blood pressure (Finometer or radial artery catheterization) were measured during lower body negative pressure (LBNP) to presyncope in 11 normothermic and 13 heat-stressed subjects (intestinal temperature increased ∼1.4°C). LBNP reduced mean arterial pressure from 91 ± 5 to 57 ± 7 mmHg during normothermia ( P ≤ 0.001) and from 82 ± 5 to 57 ± 7 mmHg during heat stress ( P ≤ 0.001). During normothermia, LBNP decreased forehead SkBF 55 ± 14% compared with 24 ± 11% at the forearm ( P = 0.002), while during heat stress LBNP decreased forehead SkBF 39 ± 11% compared with 28 ± 8% in the forearm ( P = 0.007). In both conditions, most (≥68%) of the decreases in SkBF were due to decreases in blood pressure. However, a greater contribution of actively mediated reductions in SkBF was observed at the forehead, relative to the forearm during normothermia (32 ± 13% vs. 11 ± 11%, P = 0.031) and heat stress (30 ± 13% vs. 10 ± 13%, P = 0.004). These data suggest that facial pallor at presyncope is due to a combination of passive decreases in forehead SkBF secondary to reductions in blood pressure and to active decreases in SkBF, the latter of which are relatively greater than in the forearm.


2020 ◽  
Vol 65 (3) ◽  
Author(s):  
Ekaterina Podyacheva ◽  
Tatyana Zemlyanukhina ◽  
Lavrentij Shadrin ◽  
Tatyana Baranova

The adaptive cardiovascular reactions of the human diving reflex were studied. The diving reflex was activated by submerging a face in cold water under laboratory conditions. Forty volunteers (aged 18–24) were examined. ECG, arterial blood pressure (ABP) and central blood flow were recorded by the impedance rheography method in resting state, during diving simulation (DS) and after apnea. During DS there is a statistically significant decrease in the dicrotic index (DCI), which reflects a decrease in the resistive vessel tone and as well as diastolic index (DSI), characterizing lung perfusion. A comparison of the latent periods (LP) of an increase in ABP and a drop in DCI showed that a decrease in pulmonary vascular tone develops faster than ABP begins to increase. The LP for lowering DCI is from 0.6 to 10 s; for an increase in ABP — from 6 to 30 s. A short LP for DCI and the absence of a correlation between a decrease in ABP and DCI suggests that a decrease in pulmonary vascular tone during DS occurs reflexively and independently of a change in ABP.


1995 ◽  
Vol 79 (1) ◽  
pp. 141-145 ◽  
Author(s):  
G. Ahlborg ◽  
E. Weitzberg ◽  
J. M. Lundberg

The effect of minimal changes in circulating plasma endothelin-1 (ET-1) was studied in 12 healthy subjects receiving either 60 min of ET-1 (0.2 pmol.kg-1.min-1) or physiological saline intravenously. Blood was drawn from arterial, renal, and central hepatic vein catheters. Arterial ET-1-like immunoreactivity (ET-1-LI) increased from 4.7 +/- 0.4 (SE) to 8.6 +/- 1.0 pmol/l during ET-1 infusion. After 10 min, plasma ET-1-LI had increased to 6.12 +/- 0.29 pmol/l. For comparison the plasma ET-1-LI level was 12.9 +/- 4.2 pmol/in five patients with sepsis syndrome. Mean arterial blood pressure rose from 92 +/- 3 to 99 +/- 4 mmHg. Estimated splanchnic and renal blood flows fell by 18 +/- 5 and 10 +/- 3%, respectively, and splanchnic glucose production fell by 42 +/- 6% within 10 min of the ET-1 infusion and differed compared with corresponding control values. Only estimated splanchnic blood flow had increased 60 min after the ET-1 infusion. No change in splanchnic uptake of lactate or glycerol was seen. In conclusion, we suggest that circulating ET-1 with small or no demonstrable change in plasma concentration interferes with vasoactivity and splanchnic glycogenolyses in health and possibly pathophysiological conditions.


1981 ◽  
Vol 60 (2) ◽  
pp. 139-143 ◽  
Author(s):  
S. J. Watt ◽  
R. D. Thomas ◽  
P. W. Belfield ◽  
P. W. Goldstraw ◽  
S. H. Taylor

1. The effects of single oral doses of various sympatholytic drugs on the heart rate and blood pressure increases during isometric handgrip contraction were studied in six healthy subjects. 2. Bethanidine reduced both the systolic and diastolic increases in pressure. Clonidine reduced the systolic but not the diastolic increase. Oxprenolol alone or in combination with phentolamine or phenyoxybenzamine failed to influence the pressor response. 3. The increase in systemic blood pressure associated with sustained contraction of voluntary muscle appears to be relatively resistant to acute sympathetic adrenoreceptor blockade in man.


1996 ◽  
Vol 91 (2) ◽  
pp. 163-168 ◽  
Author(s):  
E. Van Beek ◽  
A. J. H. M. Houben ◽  
P. N. Van Es ◽  
C. Willekes ◽  
E. C. C. M. Korten ◽  
...  

1. The objective of this study was to investigate whether the luteal phase of the menstrual cycle differs from the follicular phase by the development of a state of general vascular relaxation. 2. Once in the follicular and once in the luteal phase of the menstrual cycle, we measured by non-invasive techniques: arterial blood pressure (by finger blood pressure measurements), vascular tone (by pulse-wave velocity and plethysmography), blood flow to skin (by laser-Doppler), blood flow to forearm (by plethysmography) and blood flow to kidneys (by para-aminohippurate clearance), and the glomerular filtration rate (by inulin clearance). The data points obtained in the luteal phase were compared with those in the follicular phase by non-parametric tests. 3. Arterial blood pressure, vascular tone and the blood flows to the forearm and kidneys were comparable in the two phases of the menstrual cycle. In contrast, the blood flow to the skin was consistently lower, and the glomerular filtration rate higher in the luteal phase of the menstrual cycle. 4. The results of the present study do not support our hypothesis of a general vascular relaxation in the luteal phase of the menstrual cycle. The lower skin flow in the luteal phase may be an adaptation needed to ensure the higher core temperature of 0.3–0.5°C in the luteal phase. The higher glomerular filtration rate was in most cases paralleled by a higher renal blood flow in the luteal phase. This suggests that the higher glomerular filtration rate is secondary to a selective vasorelaxation of the afferent renal arterioles.


1989 ◽  
Vol 17 (03n04) ◽  
pp. 203-210
Author(s):  
Huei-Yann Tsai ◽  
Ruey-Tean Chiang ◽  
Tzu-Wei Tan ◽  
Ho-Chan Chen

Vandellia cordifolia (COLSM) G, DON of Scrophulariaceae (V. cordifolia) is an annual wild herb indigenous to Taiwan. It can be found in plains, low altitudes, swampy places, and paddy fields. Taiwanese folk physicians use it in "nephritis, uremia, furnucle, carbuncle." The LD50 (95% confidence limit) of the crude exract of V. codifolia given by the oral route was more than 10 g/kg in rats. By the intraperitoneal route, it was 4.6 g/kg (4.35–4.93), The extraction rate was 16.6%. We studied its effects on renal functions and blood pressure and found that (1) it had diuretic effect on normal rats, (2) it decreased glomerular filtration rate and renal blood flow on normal kidneys in rabbits, (3) it had no effects on glomerular filtration rate and renal blood flow on glycerin-induced insufficient kidneys in rabbits, (4) it had diuretic effects on both normal and glycerin-induced insufficient kidneys in rabbits, (5) it could inhibit Na+ and K+ reabsorptionn on normal and glycerin-induced insufficient kidneys in rabbits, (6) it had hypertensive effect and this effect could be blocked by phenoxybenzamine. From the above facts, we conclude that V, cordifolia had diuretic effect and it may act on renal tubules to inhibit Na+ and K+ reabsorption.


Sign in / Sign up

Export Citation Format

Share Document