scholarly journals Myeloid-derived suppressor cells shift Th17/Treg ratio and promote systemic lupus erythematosus progression through arginase-1/miR-322-5p/TGF-β pathway

2020 ◽  
Vol 134 (16) ◽  
pp. 2209-2222
Author(s):  
Bo Pang ◽  
Yu Zhen ◽  
Cong Hu ◽  
Zhanchuan Ma ◽  
Shan Lin ◽  
...  

Abstract Immune cells play important roles in systemic lupus erythematosus (SLE). We previously found that myeloid-derived suppressor cell (MDSC)-derived arginase-1 (Arg-1) promoted Th17 cell differentiation in SLE. In the present study, we performed RNA-chip to identify the microRNA regulation network between MDSCs and Th17 cells. miR-542-5p in humans, as the homologous gene of miR-322-5p in mice was significantly up-regulated in the Th17+MDSC group compared with Th17 cells cultured alone and down-regulated in the Th17+MDSC+Arg-1 inhibitor group compared with the Th17+MDSC group. We further evaluated the miR-322-5p and Th17/Treg balance in mice and found that the proportions of both Th17 cells and Tregs were elevated and that miR-322-5p overexpression activated the transforming growth factor-β pathway. Moreover, although miR-322-5p expression was higher in SLE mice, it decreased after treatment with an Arg-1 inhibitor. The proportion of Th17 cells and Th17/Treg ratio correlated with miR-322-5p levels. In conclusion, MDSC-derived Arg-1 and mmu-miR-322-5p not only promote Th17 cell and Treg differentiation, but also shift the Th17/Treg ratio in SLE. The Arg-1/miR-322-5p axis may serve as a novel treatment target for SLE.

2021 ◽  
Vol 9 (A) ◽  
pp. 169-176
Author(s):  
Azizah Retno Kustiyah ◽  
Agung Putra ◽  
Taufiqurrachman Nasihun ◽  
Rajesh Ramasamy

BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by altered T-cell population homeostasis, including Th1 and Th17 populations. Mesenchymal stem cell (MSC)-induced i-Treg in SLE milieu can suppress Th17 cell populations; however, Th1 cell population status as a response to the Th17 decrease remains unclear. Therefore, improving SLE flare by suppressing Th17 and constantly controlling Th1 under normal level through MSCs administration is crucial. AIM: This study aimed to investigate the role of MSCs in suppressing Th17 cell populations and controlling Th1 to a normal level by in vitro coculturing MSCs with PBMC from SLE patients.. METHODS: This study used a post-test control group design. MSCs were obtained from human umbilical cord blood and characterized according to their surface antigen expression and multilineage differentiation capacities. PBMCs isolated from SLE patients were divided into five groups: Sham, control, and three treatment groups. The treatment groups were treated by coculturing MSCs to PBMCs with a ratio of 1:10, 1:25, and 1:40 for 72 h incubation. Th1 and Th17 cells were analyzed by flow cytometry. RESULTS: This study showed that there was no significance difference of the percentages of Th1 cells on all treatment groups. On the other hand, the percentages of Th17 were significantly decreased on T1 group. Interestingly, there was also significant decrease of Th1-like Th17 cells population on T1 group. CONCLUSIONS: MSCs may suppress Th17 and control Th1 to a normal level by in vitro coculturing MSCs with PBMC from SLE.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jie Wang ◽  
Qian Chen ◽  
Zhixiong Zhang ◽  
Shangshang Wang ◽  
Yilun Wang ◽  
...  

AbstractOur previous study demonstrated that azithromycin could promote alternatively activated (M2) macrophages under lupus conditions in vitro, which might be beneficial for lupus treatment. Thus, the aim of this study was to further confirm whether azithromycin can drive M2 polarisation in lupus and ultimately alleviate systemic lupus erythematosus (SLE) in vivo. Lymphocyte-derived DNA (ALD-DNA)-induced mice (induced lupus model) and MRL-Faslpr mice (spontaneous lupus model) were both used in the experiment. First, we observed symptoms of lupus by assessing the levels of serum anti-dsDNA antibodies and serum creatinine and renal pathology. We found that both murine models showed increased levels of serum anti-dsDNA antibodies and creatinine, enhanced glomerular fibrosis and cell infiltration, basement membrane thickening and elevated IgG deposition. After azithromycin treatment, all these medical indexes were alleviated, and kidney damage was effectively reversed. Next, macrophage polarisation was assessed in the spleen and kidneys. Macrophage infiltration in the spleen was notably decreased after azithromycin treatment in both murine models, with a remarkably elevated proportion of M2 macrophages. In addition, the expression of interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), CD86, toll-like receptor (TLR)2 and TLR4 was extremely downregulated, while the expression of transforming growth factor (TGF)-β, arginase-1 (Arg-1), chitinase-like 3 (Ym-1), found in inflammatory zone (Fizz-1) and mannose receptor (CD206) was significantly upregulated in the kidneys after azithromycin treatment. Taken together, our results indicated for the first time that azithromycin could alleviate lupus by promoting M2 polarisation in vivo. These findings exploited the newly discovered potential of azithromycin, a conventional drug with verified safety, affordability and global availability, which could be a novel treat-to-target strategy for SLE via macrophage modulation.


2016 ◽  
Vol 130 (16) ◽  
pp. 1453-1467 ◽  
Author(s):  
Jianjian Ji ◽  
Jingjing Xu ◽  
Shuli Zhao ◽  
Fei Liu ◽  
Jingjing Qi ◽  
...  

Although major advancements have made in investigating the aetiology of SLE (systemic lupus erythaematosus), the role of MDSCs (myeloid-derived suppressor cells) in SLE progression remains confused. Recently, some studies have revealed that MDSCs play an important role in lupus mice. However, the proportion and function of MDSCs in lupus mice and SLE patients are still poorly understood. In the present study, we investigated the proportion and function of MDSCs using different stages of MRL/lpr lupus mice and specimens from SLE patients with different activity. Results showed that splenic granulocytic (G-)MDSCs were significantly expanded by increasing the expression of CCR1 (CC chemokine receptor 1) in diseased MRL/lpr lupus mice and in high-disease-activity SLE patients. However, the proportion of monocytic (M-)MDSCs remains similar in MRL/lpr lupus mice and SLE patients. G-MDSCs produce high levels of ROS (reactive oxygen species) through increasing gp91phox expression, and activated TLR2 (Toll-like receptor 2) and AIM2 (absent in melanoma 2) inflammasome in M-MDSCs lead to IL-1β (interleukin 1β) expression in diseased MRL/lpr mice and high-disease-activity SLE patients. Previous study has revealed that MDSCs could alter the plasticity of Th17 (T helper 17) cells and Tregs (regulatory T-cells) via ROS and IL-1β. Co-culture experiments showed that G-MDSCs impaired Treg differentiation via ROS and M-MDSCs promoted Th17 cell polarization by IL-1β in vitro. Furthermore, adoptive transfer or antibody depletion of MDSCs in MRL/lpr mice confirmed that MDSCs influenced the imbalance of Tregs and Th17 cells in vivo. Our results indicate that MDSCs with the capacity to regulate Th17 cell/Treg balance may be a critical pathogenic factor in SLE.


2010 ◽  
Vol 37 (10) ◽  
pp. 2039-2045 ◽  
Author(s):  
ANDREA BECKER-MEROK ◽  
GRO ØSTLI EILERTSEN ◽  
JOHANNES C. NOSSENT

Objective.Cytokines are central regulators of the immune response but the workings of this complex network in systemic lupus erythematosus (SLE) are not fully understood. We investigated a range of inflammatory and immune-modulating cytokines to determine their value as biomarkers for disease subsets in SLE.Methods.This was a cross-sectional study in 102 patients with SLE (87% women, disease duration 10.6 yrs). Circulating concentrations of interleukin 1β (IL-1β), IL-4, IL-6, IL-10, IL-12, IL-17, monocyte chemotactic protein 1 (MCP-1), macrophage inflammatory protein 1 (MIP-1α), MIP-1β, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and total transforming growth factor-β1 (TGF-β1) were related to disease activity (SLE Disease Activity Index; SLEDAI), lymphocyte subsets, autoantibody levels, accrued damage (Systemic Lupus International Collaborating Clinics/ACR Damage Index; SDI), and concomitant treatment.Results.Patients with SLE had lower levels of TGF-β1 (p = 0.01) and IL-1β (p = 0.0004) compared to controls. TGF-β1 levels were lower in patients with SLEDAI scores 1–10 and SDI > 3; and were correlated with CD4+, CD8+, and natural killer cell counts; and were independent of steroid or cytotoxic drug use. Treatment with cardiovascular drugs was associated with lower IL-12 levels. No consistent disease associations existed for the other cytokines investigated.Conclusion.Lower TGF-β1 was the most consistent cytokine abnormality in patients with SLE. The associations with disease activity, lymphocyte subsets, and damage suggest that TGF-β1 may be a therapeutic target of interest in SLE.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Alessia Alunno ◽  
Elena Bartoloni ◽  
Onelia Bistoni ◽  
Giuseppe Nocentini ◽  
Simona Ronchetti ◽  
...  

Pathogenic mechanisms underlying the development of systemic lupus erythematosus (SLE) are very complex and not yet entirely clarified. However, the pivotal role of T lymphocytes in the induction and perpetuation of aberrant immune response is well established. Among T cells, IL-17 producing T helper (Th17) cells and regulatory T (Treg) cells represent an intriguing issue to be addressed in SLE pathogenesis, since an imbalance between the two subsets has been observed in the course of the disease. Treg cells appear to be impaired and therefore unable to counteract autoreactive T lymphocytes. Conversely, Th17 cells accumulate in target organs contributing to local IL-17 production and eventually tissue damage. In this setting, targeting Treg/Th17 balance for therapeutic purposes may represent an intriguing and useful tool for SLE treatment in the next future. In this paper, the current knowledge about Treg and Th17 cells interplay in SLE will be discussed.


Sign in / Sign up

Export Citation Format

Share Document