Subcortical Lesions and Aphasia

1990 ◽  
Vol 55 (1) ◽  
pp. 90-100 ◽  
Author(s):  
Donald A. Robin ◽  
Steven Schienberg

Recent evidence suggests that subcortical lesions can give rise to aphasic symptoms. Two subcortical structures thought to participate in the pathogenesis of aphasia are the basal ganglia and the thalamus. This paper reports on 3 patients with lesions of the thalamus and 10 patients with lesions of the basal ganglia, most of whom had persistent aphasias. The role of subcortical structures in aphasia and the importance of subcortical structures in neural models of language are discussed.

2004 ◽  
Vol 18 (2/3) ◽  
pp. 130-139 ◽  
Author(s):  
Guillermo Paradiso ◽  
Danny Cunic ◽  
Robert Chen

Abstract Although it has long been suggested that the basal ganglia and thalamus are involved in movement planning and preparation, there was little direct evidence in humans to support this hypothesis. Deep brain stimulation (DBS) is a well-established treatment for movement disorders such as Parkinson's disease, tremor, and dystonia. In patients undergoing DBS surgery, we recorded simultaneously from scalp contacts and from electrodes surgically implanted in the subthalamic nucleus (STN) of 13 patients with Parkinson's disease and in the “cerebellar” thalamus of 5 patients with tremor. The aim of our studies was to assess the role of the cortico-basal ganglia-thalamocortical loop through the STN and the cerebello-thalamocortical circuit through the “cerebellar” thalamus in movement preparation. The patients were asked to perform self-paced wrist extension movements. All subjects showed a cortical readiness potential (RP) with onset ranging between 1.5 to 2s before the onset of movement. Subcortical RPs were recorded in 11 of 13 with electrodes in the STN and in 4 of 5 patients with electrodes in the thalamus. The onset time of the STN and thalamic RPs were not significantly different from the onset time of the scalp RP. The STN and thalamic RPs were present before both contralateral and ipsilateral hand movements. Postoperative MRI studies showed that contacts with maximum RP amplitude generally were inside the target nucleus. These findings indicate that both the basal ganglia and the cerebellar circuits participate in movement preparation in parallel with the cortex.


2010 ◽  
Vol 22 (9) ◽  
pp. 2141-2150 ◽  
Author(s):  
Luca Francesco Ticini ◽  
Bianca de Haan ◽  
Uwe Klose ◽  
Thomas Nägele ◽  
Hans-Otto Karnath

Visual extinction is an intriguing defect of awareness in stroke patients, referring to the unsuccessful perception of contralesional events under conditions of competition. Previous studies have investigated the cortical and subcortical brain structures that, when damaged or inactivated, provoke visual extinction. The present experiment asked how lesions of subcortical structures may contribute to the appearance of visual extinction. We investigated whether lesions centering on right basal ganglia may induce dysfunction in distant, structurally intact cortical structures. Normalized perfusion-weighted MRI was used to identify structurally intact but abnormally perfused brain tissue, that is, zones that are receiving enough blood supply to remain structurally intact but not enough to function normally. We compared patients with right basal ganglia lesions showing versus not showing visual extinction. In the extinction patients, the contrast revealed cortical malperfusion that clustered around the right TPJ. It seems as if malfunction of this area is a critical aspect in visual extinction not only after cortical lesion but also in the case of subcortical basal ganglia damage. Our results support the idea that a normally functioning TPJ area plays a decisive role for the attentional network involved in detecting of visual stimuli under conditions of competition.


2017 ◽  
Author(s):  
Ludivine Pidoux ◽  
Pascale Leblanc ◽  
Arthur Leblois

AbstractSpeech is a complex sensorimotor skill, and vocal learning involves both the basal ganglia and the cerebellum. These subcortical structures interact indirectly through their respective loops with thalamo-cortical and brainstem networks, and directly via subcortical pathways, but the role of their interaction during sensorimotor learning remains undetermined. While songbirds and their song-dedicated basal ganglia-thalamo-cortical circuitry offer a unique opportunity to study subcortical circuits involved in vocal learning, the cerebellar contribution to avian song learning remains unknown. We demonstrate that the cerebellum provides a strong input to the song-related basal ganglia nucleus in zebra finches. Cerebellar signals are transmitted to the basal ganglia via a disynaptic connection through the thalamus and then conveyed to their cortical target and to the premotor nucleus controlling song production. Finally, cerebellar lesions impair juvenile song learning, opening new opportunities to investigate how subcortical interactions between the cerebellum and basal ganglia contribute to sensorimotor learning.


Author(s):  
David A. Copland ◽  
Anthony J. Angwin

While it is well established that language processing is dependent on cortical mechanisms, the role of the subcortex in language function has been a point of contention since the initial clinical-anatomical observations of language deficits following vascular subcortical lesions. This chapter reviews both traditional proposals and recent discoveries of the functional and structural connectivity of the basal ganglia and thalamus with the cortex, suggesting that these subcortical structures are well positioned to contribute to language processing. It then examines both patient and healthy neuroimaging data implicating the thalamus and basal ganglia in various aspects of language, including lexical-semantics, verb/action processing, grammar, and sentence comprehension. While there is still considerable conjecture regarding the role of the basal ganglia in a number of these operations, there is now considerable evidence that the thalamus influences lexical-semantic processing through attentional engagement, while striatal-thalamic-cortical circuits most likely influence lexical-semantic functions, bilingual language processing, and sentence comprehension through domain-general mechanisms, including controlled selection and suppression.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Ludivine Pidoux ◽  
Pascale Le Blanc ◽  
Carole Levenes ◽  
Arthur Leblois

Speech is a complex sensorimotor skill, and vocal learning involves both the basal ganglia and the cerebellum. These subcortical structures interact indirectly through their respective loops with thalamo-cortical and brainstem networks, and directly via subcortical pathways, but the role of their interaction during sensorimotor learning remains undetermined. While songbirds and their song-dedicated basal ganglia-thalamo-cortical circuitry offer a unique opportunity to study subcortical circuits involved in vocal learning, the cerebellar contribution to avian song learning remains unknown. We demonstrate that the cerebellum provides a strong input to the song-related basal ganglia nucleus in zebra finches. Cerebellar signals are transmitted to the basal ganglia via a disynaptic connection through the thalamus and then conveyed to their cortical target and to the premotor nucleus controlling song production. Finally, cerebellar lesions impair juvenile song learning, opening new opportunities to investigate how subcortical interactions between the cerebellum and basal ganglia contribute to sensorimotor learning.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lei Xiao ◽  
Devin P. Merullo ◽  
Therese M. I. Koch ◽  
Mou Cao ◽  
Marissa Co ◽  
...  

AbstractDisruption of the transcription factor FoxP2, which is enriched in the basal ganglia, impairs vocal development in humans and songbirds. The basal ganglia are important for the selection and sequencing of motor actions, but the circuit mechanisms governing accurate sequencing of learned vocalizations are unknown. Here, we show that expression of FoxP2 in the basal ganglia is vital for the fluent initiation and termination of birdsong, as well as the maintenance of song syllable sequencing in adulthood. Knockdown of FoxP2 imbalances dopamine receptor expression across striatal direct-like and indirect-like pathways, suggesting a role of dopaminergic signaling in regulating vocal motor sequencing. Confirming this prediction, we show that phasic dopamine activation, and not inhibition, during singing drives repetition of song syllables, thus also impairing fluent initiation and termination of birdsong. These findings demonstrate discrete circuit origins for the dysfluent repetition of vocal elements in songbirds, with implications for speech disorders.


2012 ◽  
Vol 23 (5-6) ◽  
Author(s):  
Claudio Da Cunha ◽  
Alexander Gomez-A ◽  
Charles D. Blaha

1987 ◽  
Vol 50 (3) ◽  
pp. 367-368 ◽  
Author(s):  
A S Walters ◽  
M Katchen ◽  
J Fleishman ◽  
S Chokroverty ◽  
R Duvoisin

2018 ◽  
Vol 115 (48) ◽  
pp. 12283-12288 ◽  
Author(s):  
Assaf Breska ◽  
Richard B. Ivry

Predicting the timing of upcoming events is critical for successful interaction in a dynamic world, and is recognized as a key computation for attentional orienting. Temporal predictions can be formed when recent events define a rhythmic structure, as well as in aperiodic streams or even in isolation, when a specified interval is known from previous exposure. However, whether predictions in these two contexts are mediated by a common mechanism, or by distinct, context-dependent mechanisms, is highly controversial. Moreover, although the basal ganglia and cerebellum have been linked to temporal processing, the role of these subcortical structures in temporal orienting of attention is unclear. To address these issues, we tested individuals with cerebellar degeneration or Parkinson’s disease, with the latter serving as a model of basal ganglia dysfunction, on temporal prediction tasks in the subsecond range. The participants performed a visual detection task in which the onset of the target was predictable, based on either a rhythmic stream of stimuli, or a single interval, specified by two events that occurred within an aperiodic stream. Patients with cerebellar degeneration showed no benefit from single-interval cuing but preserved benefit from rhythm cuing, whereas patients with Parkinson’s disease showed no benefit from rhythm cuing but preserved benefit from single-interval cuing. This double dissociation provides causal evidence for functionally nonoverlapping mechanisms of rhythm- and interval-based temporal prediction for attentional orienting, and establishes the separable contributions of the cerebellum and basal ganglia to these functions, suggesting a mechanistic specialization across timing domains.


Sign in / Sign up

Export Citation Format

Share Document