Frequency-Discrimination Ability of Hearing-Impaired Listeners

1981 ◽  
Vol 24 (1) ◽  
pp. 108-112 ◽  
Author(s):  
P. M. Zurek ◽  
C. Formby

Thresholds for frequency modulation were measured by an adaptive, two-alternative, forced-choice method with ten listeners: eight who showed varying degrees of sensorineural hearing impairment, and two with normal-hearing sensitivity. Results for test frequencies spaced at octave intervals between 125 and 4000 Hz showed that, relative to normal-hearing listeners, the ability of the hearing-impaired listeners to detect a sinusoidal frequency modulation: (1) is diminished above a certain level of hearing loss; and (2) is more disrupted for low-frequency tones than for high-frequency tones, given the same degree of hearing loss at the test frequency. The first finding is consistent with that of previous studies which show a general deterioration of frequency-discrimination ability associated with moderate, or worse, hearing loss. It is proposed that the second finding may be explained: 1) by differential impairment of the temporal and place mechanisms presumed to, encode pitch at the lower and higher frequencies, respectively; and/or, 2) for certain configurations of hearing loss, by the asymmetrical pattern of cochlear excitation that may lead to the underestimation, from measurements of threshold sensitivity, of hearing impairment for low-frequency tones and consequently to relatively large changes in frequency discrimination for small shifts in hearing threshold.

1984 ◽  
Vol 27 (1) ◽  
pp. 12-19 ◽  
Author(s):  
Shlomo Silman ◽  
Carol Ann Silverman ◽  
Theresa Showers ◽  
Stanley A. Gelfand

The effect of age on accuracy of prediction of hearing impairment with the bivariate-plotting procedure was investigated in 72 normal-hearing subjects aged 20–69 years and in 86 sensorineural hearing-impaired subjects aged 20–83 years. The predictive accuracy with the bivariate-plotting procedure improved markedly when the data from subjects over 44 years of age were excluded from the bivariate plot. The predictive accuracy improved further when the construction of the line segments in the traditional bivariate plot was modified.


2011 ◽  
Vol 22 (07) ◽  
pp. 393-404 ◽  
Author(s):  
Elizabeth D. Leigh-Paffenroth ◽  
Saravanan Elangovan

Background: Hearing loss and age interfere with the auditory system's ability to process temporal changes in the acoustic signal. A key unresolved question is whether high-frequency sensorineural hearing loss (HFSNHL) affects temporal processing in the low-frequency region where hearing loss is minimal or nonexistent. A second unresolved question is whether changes in hearing occur in middle-aged subjects in the absence of HFSNHL. Purpose: The purpose of this study was twofold: (1) to examine the influence of HFSNHL and aging on the auditory temporal processing abilities of low-frequency auditory channels with normal hearing sensitivity and (2) to examine the relations among gap detection measures, self-assessment reports of understanding speech, and functional measures of speech perception in middle-aged individuals with and without HFSNHL. Research Design: The subject groups were matched for either age (middle age) or pure-tone sensitivity (with or without hearing loss) to study the effects of age and HFSNHL on behavioral and functional measures of temporal processing and word recognition performance. These effects were analyzed by individual repeated-measures analyses of variance. Post hoc analyses were performed for each significant main effect and interaction. The relationships among the measures were analyzed with Pearson correlations. Study Sample: Eleven normal-hearing young adults (YNH), eight normal-hearing middle-aged adults (MANH), and nine middle-aged adults with HFSNHL were recruited for this study. Normal hearing sensitivity was defined as pure-tone thresholds ≤25 dB HL for octave frequencies from 250 to 8000 Hz. HFSNHL was defined as pure-tone thresholds ≤25 dB HL from 250 to 2000 Hz and ≥35 dB HL from 3000 to 8000 Hz. Data Collection and Analysis: Gap detection thresholds (GDTs) were measured under within-channel and between-channel conditions with the stimulus spectrum limited to regions of normal hearing sensitivity for the HFSNHL group (i.e., <2000 Hz). Self-perceived hearing problems were measured by a questionnaire (Abbreviated Profile of Hearing Aid Benefit), and word recognition performance was assessed under four conditions: quiet and babble, with and without low-pass filtering (cutoff frequency = 2000 Hz). Results: The effects of HFSNHL and age were found for gap detection, self-perceived hearing problems, and word recognition in noise. The presence of HFSNHL significantly increased GDTs for stimuli presented in regions of normal pure-tone sensitivity. In addition, middle-aged subjects with normal hearing sensitivity reported significantly more problems hearing in background noise than the young normal-hearing subjects. Significant relationships between self-report measures of hearing ability in background noise and word recognition in babble were found. Conclusions: The conclusions from the present study are twofold: (1) HFSNHL may have an off-channel impact on auditory temporal processing, and (2) presenescent changes in the auditory system of MANH subjects increased self-perceived problems hearing in background noise and decreased functional performance in background noise compared with YNH subjects.


2019 ◽  
Vol 23 ◽  
pp. 233121651985396 ◽  
Author(s):  
Brian C. J. Moore ◽  
Sashi Mariathasan ◽  
Aleksander P. Sęk

Detection of frequency modulation (FM) with rate = 10 Hz may depend on conversion of FM to amplitude modulation (AM) in the cochlea, while detection of 2-Hz FM may depend on the use of temporal fine structure (TFS) information. TFS processing may worsen with greater age and hearing loss while AM processing probably does not. A two-stage experiment was conducted to test these ideas while controlling for the effects of detection efficiency. Stage 1 measured psychometric functions for the detection of AM alone and FM alone imposed on a 1-kHz carrier, using 2- and 10-Hz rates. Stage 2 assessed the discrimination of AM from FM at the same modulation rate when the detectability of the AM alone and FM alone was equated. Discrimination was better for the 2-Hz than for the 10-Hz rate for all young normal-hearing subjects and for some older subjects with normal hearing at 1 kHz. Other older subjects with normal hearing showed no clear difference in AM-FM discrimination for the 2- and 10-Hz rates, as was the case for most older hearing-impaired subjects. The results suggest that the ability to use TFS cues is reduced for some older people and most hearing-impaired people.


2014 ◽  
Vol 57 (5) ◽  
pp. 1961-1971
Author(s):  
Marianna Vatti ◽  
Sébastien Santurette ◽  
Niels Henrik Pontoppidan ◽  
Torsten Dau

Purpose Frequency fluctuations in human voices can usually be described as coherent frequency modulation (FM). As listeners with hearing impairment (HI listeners) are typically less sensitive to FM than listeners with normal hearing (NH listeners), this study investigated whether hearing loss affects the perception of a sung vowel based on FM cues. Method Vibrato maps were obtained in 14 NH and 12 HI listeners with different degrees of musical experience. The FM rate and FM excursion of a synthesized vowel, to which coherent FM was applied, were adjusted until a singing voice emerged. Results In NH listeners, adding FM to the steady vowel components produced perception of a singing voice for FM rates between 4.1 and 7.5 Hz and FM excursions between 17 and 83 cents on average. In contrast, HI listeners showed substantially broader vibrato maps. Individual differences in map boundaries were, overall, not correlated with audibility or frequency selectivity at the vowel fundamental frequency, with no clear effect of musical experience. Conclusion Overall, it was shown that hearing loss affects the perception of a sung vowel based on FM-rate and FM-excursion cues, possibly due to deficits in FM detection or discrimination or to a degraded ability to follow the rate of frequency changes.


2018 ◽  
Author(s):  
Lien Decruy ◽  
Jonas Vanthornhout ◽  
Tom Francart

AbstractElevated hearing thresholds in hearing impaired adults are usually compensated by providing amplification through a hearing aid. In spite of restoring hearing sensitivity, difficulties with understanding speech in noisy environments often remain. One main reason is that sensorineural hearing loss not only causes loss of audibility but also other deficits, including peripheral distortion but also central temporal processing deficits. To investigate the neural consequences of hearing impairment in the brain underlying speech-in-noise difficulties, we compared EEG responses to natural speech of 14 hearing impaired adults with those of 14 age-matched normal-hearing adults. We measured neural envelope tracking to sentences and a story masked by different levels of a stationary noise or competing talker. Despite their sensorineural hearing loss, hearing impaired adults showed higher neural envelope tracking of the target than the competing talker, similar to their normal-hearing peers. Furthermore, hearing impairment was related to an additional increase in neural envelope tracking of the target talker, suggesting that hearing impaired adults may have an enhanced sensitivity to envelope modulations or require a larger differential tracking of target versus competing talker to neurally segregate speech from noise. Lastly, both normal-hearing and hearing impaired participants showed an increase in neural envelope tracking with increasing speech understanding. Hence, our results open avenues towards new clinical applications, such as neuro-steered prostheses as well as objective and automatic measurements of speech understanding performance.HighlightsAdults with hearing impairment can neurally segregate speech from background noiseHearing loss is related to enhanced neural envelope tracking of the target talkerNeural envelope tracking has potential to objectively measure speech understanding


2020 ◽  
Vol 24 ◽  
pp. 233121652094551
Author(s):  
Elin Roverud ◽  
Judy R. Dubno ◽  
Gerald Kidd

Many listeners with sensorineural hearing loss have uneven hearing sensitivity across frequencies. This study addressed whether this uneven hearing loss leads to a biasing of attention to different frequency regions. Normal-hearing (NH) and hearing-impaired (HI) listeners performed a pattern discrimination task at two distant center frequencies (CFs): 750 and 3500 Hz. The patterns were sequences of pure tones in which each successive tonal element was randomly selected from one of two possible frequencies surrounding a CF. The stimuli were presented at equal sensation levels to ensure equal audibility. In addition, the frequency separation of the tonal elements within a pattern was adjusted for each listener so that equal pattern discrimination performance was obtained for each CF in quiet. After these adjustments, the pattern discrimination task was performed under conditions in which independent patterns were presented at both CFs simultaneously. The listeners were instructed to attend to the low or high CF before the stimulus (assessing selective attention to frequency with instruction) or after the stimulus (divided attention, assessing inherent frequency biases). NH listeners demonstrated approximately equal performance decrements (re: quiet) between the two CFs. HI listeners demonstrated much larger performance decrements at the 3500 Hz CF than at the 750 Hz CF in combined-presentation conditions for both selective and divided attention conditions, indicating a low-frequency attentional bias that is apparently not under subject control. Surprisingly, the magnitude of this frequency bias was not related to the degree of asymmetry in thresholds at the two CFs.


2019 ◽  
Author(s):  
Lien Decruy ◽  
Jonas Vanthornhout ◽  
Tom Francart

AbstractElevated hearing thresholds in hearing impaired adults are usually compensated by providing amplification through a hearing aid. In spite of restoring hearing sensitivity, difficulties with understanding speech in noisy environments often remain. One main reason is that sensorineural hearing loss not only causes loss of audibility but also other deficits, including peripheral distortion but also central temporal processing deficits. To investigate the neural consequences of hearing impairment in the brain underlying speech-in-noise difficulties, we compared EEG responses to natural speech of 14 hearing impaired adults with those of 14 age-matched normal-hearing adults. We measured neural envelope tracking to sentences and a story masked by different levels of a stationary noise or competing talker. Despite their sensorineural hearing loss, hearing impaired adults showed higher neural envelope tracking of the target than the competing talker, similar to their normal-hearing peers. Furthermore, hearing impairment was related to an additional increase in neural envelope tracking of the target talker, suggesting that hearing impaired adults may have an enhanced sensitivity to envelope modulations or require a larger differential tracking of target versus competing talker to neurally segregate speech from noise. Lastly, both normal-hearing and hearing impaired participants showed an increase in neural envelope tracking with increasing speech understanding. Hence, our results open avenues towards new clinical applications, such as neuro-steered prostheses as well as objective and automatic measurements of speech understanding performance.HighlightsAdults with hearing impairment can neurally segregate speech from background noiseHearing loss is related to enhanced neural envelope tracking of the target talkerNeural envelope tracking has potential to objectively measure speech understanding


CoDAS ◽  
2014 ◽  
Vol 26 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Letícia Neves de Oliveira ◽  
Alexandra Dezani Soares ◽  
Brasilia Maria Chiari

Purposes: To compare the speechreading between individuals with hearing impairment and with normal hearing levels to verify the factors that influence the speechreading among hearing impaired patients. Methods: Forty individuals with severe-to-profound hearing loss aged between 13 and 70 years old (study group) and 21 hearing individuals aged between 17 and 63 years old (control group) were evaluated. As a research instrument, anamnesis was used to characterize the groups; three speechreading instruments, presenting stimuli via a mute video, with a female speaker; and a vocabulary test, to verify their influence on speechreading. A descriptive and analytical statistics (ANOVA test and Pearson's correlation), adopting a significance level of 0.05 (5%). Results: A better performance was observed in the group with hearing impairment in speechreading tests than in the group with hearing individuals. By analyzing the group with hearing loss, there was a mean difference between tests (p<0.001), which also showed correlation between them. Individuals with pre-lingual hearing loss and those who underwent therapy for speechreading had a better performance for most speechreading instruments. The variables gender and schooling showed no influence on speechreading. Conclusion: Individuals with hearing impairment had better performance on speechreading tasks in comparison to people with normal hearing. Furthermore, it was found that the ability to perform speechread might be influenced by the vocabulary, period of installation of the hearing loss, and speechreading therapy.


1991 ◽  
Vol 34 (6) ◽  
pp. 1397-1409 ◽  
Author(s):  
Carol Goldschmidt Hustedde ◽  
Terry L. Wiley

Two companion experiments were conducted with normal-hearing subjects and subjects with high-frequency, sensorineural hearing loss. In Experiment 1, the validity of a self-assessment device of hearing handicap was evaluated in two groups of hearing-impaired listeners with significantly different consonant-recognition ability. Data for the Hearing Performance Inventory—Revised (Lamb, Owens, & Schubert, 1983) did not reveal differences in self-perceived handicap for the two groups of hearing-impaired listeners; it was sensitive to perceived differences in hearing abilities for listeners who did and did not have a hearing loss. Experiment 2 was aimed at evaluation of consonant error patterns that accounted for observed group differences in consonant-recognition ability. Error patterns on the Nonsense-Syllable Test (NST) across the two subject groups differed in both degree and type of error. Listeners in the group with poorer NST performance always demonstrated greater difficulty with selected low-frequency and high-frequency syllables than did listeners in the group with better NST performance. Overall, the NST was sensitive to differences in consonant-recognition ability for normal hearing and hearing-impaired listeners.


2012 ◽  
Vol 140 (9-10) ◽  
pp. 662-665
Author(s):  
Ljubica Zivic ◽  
Danijela Zivic

In our paper we would like to emphasize the complexity of hearing aid prescription process. It is connected to a series of factors which impact the choice of hearing aid; type of hearing loss, degree of hearing loss according to the average hearing threshold expressed within the range from 500 Hz to 4000 Hz on a tonal audiogram, audiometric curve configuration, speech discrimination ability, patients? age at which the hearing impairment occurred, time elapsed between the occurrence of hearing impairment and prescription of a hearing aid, patients? age, physical and mental health and their cognitive function, anatomical characteristics of the auricle and external auditory canal, patient and parent motivation, cosmetic factors, financial abilities, cooperation with hearing aids manufacturers. This paper is important for everyday practice and can be used as a kind of guideline to the hearing aid prescription process.


Sign in / Sign up

Export Citation Format

Share Document