scholarly journals Speechreading as a communication mediator

CoDAS ◽  
2014 ◽  
Vol 26 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Letícia Neves de Oliveira ◽  
Alexandra Dezani Soares ◽  
Brasilia Maria Chiari

Purposes: To compare the speechreading between individuals with hearing impairment and with normal hearing levels to verify the factors that influence the speechreading among hearing impaired patients. Methods: Forty individuals with severe-to-profound hearing loss aged between 13 and 70 years old (study group) and 21 hearing individuals aged between 17 and 63 years old (control group) were evaluated. As a research instrument, anamnesis was used to characterize the groups; three speechreading instruments, presenting stimuli via a mute video, with a female speaker; and a vocabulary test, to verify their influence on speechreading. A descriptive and analytical statistics (ANOVA test and Pearson's correlation), adopting a significance level of 0.05 (5%). Results: A better performance was observed in the group with hearing impairment in speechreading tests than in the group with hearing individuals. By analyzing the group with hearing loss, there was a mean difference between tests (p<0.001), which also showed correlation between them. Individuals with pre-lingual hearing loss and those who underwent therapy for speechreading had a better performance for most speechreading instruments. The variables gender and schooling showed no influence on speechreading. Conclusion: Individuals with hearing impairment had better performance on speechreading tasks in comparison to people with normal hearing. Furthermore, it was found that the ability to perform speechread might be influenced by the vocabulary, period of installation of the hearing loss, and speechreading therapy.

2019 ◽  
Vol 23 ◽  
pp. 233121651988761 ◽  
Author(s):  
Gilles Courtois ◽  
Vincent Grimaldi ◽  
Hervé Lissek ◽  
Philippe Estoppey ◽  
Eleftheria Georganti

The auditory system allows the estimation of the distance to sound-emitting objects using multiple spatial cues. In virtual acoustics over headphones, a prerequisite to render auditory distance impression is sound externalization, which denotes the perception of synthesized stimuli outside of the head. Prior studies have found that listeners with mild-to-moderate hearing loss are able to perceive auditory distance and are sensitive to externalization. However, this ability may be degraded by certain factors, such as non-linear amplification in hearing aids or the use of a remote wireless microphone. In this study, 10 normal-hearing and 20 moderate-to-profound hearing-impaired listeners were instructed to estimate the distance of stimuli processed with different methods yielding various perceived auditory distances in the vicinity of the listeners. Two different configurations of non-linear amplification were implemented, and a novel feature aiming to restore a sense of distance in wireless microphone systems was tested. The results showed that the hearing-impaired listeners, even those with a profound hearing loss, were able to discriminate nearby and far sounds that were equalized in level. Their perception of auditory distance was however more contracted than in normal-hearing listeners. Non-linear amplification was found to distort the original spatial cues, but no adverse effect on the ratings of auditory distance was evident. Finally, it was shown that the novel feature was successful in allowing the hearing-impaired participants to perceive externalized sounds with wireless microphone systems.


1984 ◽  
Vol 27 (1) ◽  
pp. 12-19 ◽  
Author(s):  
Shlomo Silman ◽  
Carol Ann Silverman ◽  
Theresa Showers ◽  
Stanley A. Gelfand

The effect of age on accuracy of prediction of hearing impairment with the bivariate-plotting procedure was investigated in 72 normal-hearing subjects aged 20–69 years and in 86 sensorineural hearing-impaired subjects aged 20–83 years. The predictive accuracy with the bivariate-plotting procedure improved markedly when the data from subjects over 44 years of age were excluded from the bivariate plot. The predictive accuracy improved further when the construction of the line segments in the traditional bivariate plot was modified.


2005 ◽  
Vol 48 (4) ◽  
pp. 910-921 ◽  
Author(s):  
Laura E. Dreisbach ◽  
Marjorie R. Leek ◽  
Jennifer J. Lentz

The ability to discriminate the spectral shapes of complex sounds is critical to accurate speech perception. Part of the difficulty experienced by listeners with hearing loss in understanding speech sounds in noise may be related to a smearing of the internal representation of the spectral peaks and valleys because of the loss of sensitivity and an accompanying reduction in frequency resolution. This study examined the discrimination by hearing-impaired listeners of highly similar harmonic complexes with a single spectral peak located in 1 of 3 frequency regions. The minimum level difference between peak and background harmonics required to discriminate a small change in the spectral center of the peak was measured for peaks located near 2, 3, or 4 kHz. Component phases were selected according to an algorithm thought to produce either highly modulated (positive Schroeder) or very flat (negative Schroeder) internal waveform envelopes in the cochlea. The mean amplitude difference between a spectral peak and the background components required for discrimination of pairs of harmonic complexes (spectral contrast threshold) was from 4 to 19 dB greater for listeners with hearing impairment than for a control group of listeners with normal hearing. In normal-hearing listeners, improvements in threshold were seen with increasing stimulus level, and there was a strong effect of stimulus phase, as the positive Schroeder stimuli always produced lower thresholds than the negative Schroeder stimuli. The listeners with hearing loss showed no consistent spectral contrast effects due to stimulus phase and also showed little improvement with increasing stimulus level, once their sensitivity loss was overcome. The lack of phase and level effects may be a result of the more linear processing occurring in impaired ears, producing poorer-than-normal frequency resolution, a loss of gain for low amplitudes, and an altered cochlear phase characteristic in regions of damage.


1981 ◽  
Vol 24 (1) ◽  
pp. 108-112 ◽  
Author(s):  
P. M. Zurek ◽  
C. Formby

Thresholds for frequency modulation were measured by an adaptive, two-alternative, forced-choice method with ten listeners: eight who showed varying degrees of sensorineural hearing impairment, and two with normal-hearing sensitivity. Results for test frequencies spaced at octave intervals between 125 and 4000 Hz showed that, relative to normal-hearing listeners, the ability of the hearing-impaired listeners to detect a sinusoidal frequency modulation: (1) is diminished above a certain level of hearing loss; and (2) is more disrupted for low-frequency tones than for high-frequency tones, given the same degree of hearing loss at the test frequency. The first finding is consistent with that of previous studies which show a general deterioration of frequency-discrimination ability associated with moderate, or worse, hearing loss. It is proposed that the second finding may be explained: 1) by differential impairment of the temporal and place mechanisms presumed to, encode pitch at the lower and higher frequencies, respectively; and/or, 2) for certain configurations of hearing loss, by the asymmetrical pattern of cochlear excitation that may lead to the underestimation, from measurements of threshold sensitivity, of hearing impairment for low-frequency tones and consequently to relatively large changes in frequency discrimination for small shifts in hearing threshold.


2018 ◽  
Author(s):  
Lien Decruy ◽  
Jonas Vanthornhout ◽  
Tom Francart

AbstractElevated hearing thresholds in hearing impaired adults are usually compensated by providing amplification through a hearing aid. In spite of restoring hearing sensitivity, difficulties with understanding speech in noisy environments often remain. One main reason is that sensorineural hearing loss not only causes loss of audibility but also other deficits, including peripheral distortion but also central temporal processing deficits. To investigate the neural consequences of hearing impairment in the brain underlying speech-in-noise difficulties, we compared EEG responses to natural speech of 14 hearing impaired adults with those of 14 age-matched normal-hearing adults. We measured neural envelope tracking to sentences and a story masked by different levels of a stationary noise or competing talker. Despite their sensorineural hearing loss, hearing impaired adults showed higher neural envelope tracking of the target than the competing talker, similar to their normal-hearing peers. Furthermore, hearing impairment was related to an additional increase in neural envelope tracking of the target talker, suggesting that hearing impaired adults may have an enhanced sensitivity to envelope modulations or require a larger differential tracking of target versus competing talker to neurally segregate speech from noise. Lastly, both normal-hearing and hearing impaired participants showed an increase in neural envelope tracking with increasing speech understanding. Hence, our results open avenues towards new clinical applications, such as neuro-steered prostheses as well as objective and automatic measurements of speech understanding performance.HighlightsAdults with hearing impairment can neurally segregate speech from background noiseHearing loss is related to enhanced neural envelope tracking of the target talkerNeural envelope tracking has potential to objectively measure speech understanding


2019 ◽  
Author(s):  
Lien Decruy ◽  
Jonas Vanthornhout ◽  
Tom Francart

AbstractElevated hearing thresholds in hearing impaired adults are usually compensated by providing amplification through a hearing aid. In spite of restoring hearing sensitivity, difficulties with understanding speech in noisy environments often remain. One main reason is that sensorineural hearing loss not only causes loss of audibility but also other deficits, including peripheral distortion but also central temporal processing deficits. To investigate the neural consequences of hearing impairment in the brain underlying speech-in-noise difficulties, we compared EEG responses to natural speech of 14 hearing impaired adults with those of 14 age-matched normal-hearing adults. We measured neural envelope tracking to sentences and a story masked by different levels of a stationary noise or competing talker. Despite their sensorineural hearing loss, hearing impaired adults showed higher neural envelope tracking of the target than the competing talker, similar to their normal-hearing peers. Furthermore, hearing impairment was related to an additional increase in neural envelope tracking of the target talker, suggesting that hearing impaired adults may have an enhanced sensitivity to envelope modulations or require a larger differential tracking of target versus competing talker to neurally segregate speech from noise. Lastly, both normal-hearing and hearing impaired participants showed an increase in neural envelope tracking with increasing speech understanding. Hence, our results open avenues towards new clinical applications, such as neuro-steered prostheses as well as objective and automatic measurements of speech understanding performance.HighlightsAdults with hearing impairment can neurally segregate speech from background noiseHearing loss is related to enhanced neural envelope tracking of the target talkerNeural envelope tracking has potential to objectively measure speech understanding


2020 ◽  
pp. 64-68
Author(s):  
V.D. Kuroiedova ◽  
Yu.K. Sokolohorska-Nykina

The study of the muscles of the maxillofacial area both in normal and pathological occlusions is the area of great interest, since muscle function is an indicator of complex functional relationships of the dento-mandibular system. Hearing impaired patients have many features related to the functional features of the maxillofacial area due to the slight or complete lack of use of facial muscles during speech or through the use of sign language. Hearing impaired children have 100% of bite pathology. The functional state of chewing and temporal muscles in schoolchildren with hearing loss in constant bite at rest was studied. Twenty-five hearing impaired students with permanent dentistry were studied at Poltava Special Boarding School for Deaf Children, who formed the study group. Among them, there were 13 women (62.5%) and 12 men (37.5%). The mean age was 18.7 ± 1.31 years. The control group used the data of the study of patients with constant physiological bite without hearing disorders, determined by M. I. Dmytrenko. The average age was 21.3 ± 1.25 years. The bioelectric activity of the chewing muscles was examined on an electromyographic complex. The average values of oscillation amplitude (μV) of muscle biopotential on both sides were determined. Muscle biopotentials were recorded for five seconds in a state of physiological calm with closed lips. The results show that all indicators of PD of chewing muscles in a state of physiological rest are almost 2 times higher (p˂0,05) in comparison with those of patients with normal hearing and physiological bite. The work of the temporal muscles in schoolchildren with hearing loss is characterized by symmetry. There is also greater electrical activity of the temporal muscle than the masticatory muscles at rest, unlike normal hearing patients. All patients with hearing impairment had 100% prevalence of dental anomalies. Biopotential of chewing muscle of I class. for angle was 2.7 times higher than in patients with the control group. The biopotential of the temporalis muscle in the ICE was 1.8 times higher (p˂0.05), which indicates a constant tension or insufficient muscle relaxation in patients with ICE. In patients with hearing loss of II class. for angle, the average value of the biopotential of the chewing muscle was 2.3 times higher than in patients in 2 group, the temporal muscle was 1.5 times higher.


2020 ◽  
Vol 9 (5) ◽  
pp. 1381
Author(s):  
Yael Zaltz ◽  
Yossi Bugannim ◽  
Doreen Zechoval ◽  
Liat Kishon-Rabin ◽  
Ronen Perez

Cochlear implants (CIs) are the state-of-the-art therapy for individuals with severe to profound hearing loss, providing them with good functional hearing. Nevertheless, speech understanding in background noise remains a significant challenge. The purposes of this study were to: (1) conduct a novel within-study comparison of speech-in-noise performance across ages in different populations of CI and normal hearing (NH) listeners using an adaptive sentence-in-noise test, and (2) examine the relative contribution of sensory information and cognitive–linguistic factors to performance. Forty CI users (mean age 20 years) were divided into “early-implanted” <4 years (n = 16) and “late-implanted” >6 years (n = 11), all prelingually deafened, and “progressively deafened” (n = 13). The control group comprised 136 NH subjects (80 children, 56 adults). Testing included the Hebrew Matrix test, word recognition in quiet, and linguistic and cognitive tests. Results show poorer performance in noise for CI users across populations and ages compared to NH peers, and age at implantation and word recognition in quiet were found to be contributing factors. For those recognizing 50% or more of the words in quiet (n = 27), non-verbal intelligence and receptive vocabulary explained 63% of the variance in noise. This information helps delineate the relative contribution of top-down and bottom-up skills for speech recognition in noise and can help set expectations in CI counseling.


2020 ◽  
Vol 63 (4) ◽  
pp. 1299-1311 ◽  
Author(s):  
Timothy Beechey ◽  
Jörg M. Buchholz ◽  
Gitte Keidser

Objectives This study investigates the hypothesis that hearing aid amplification reduces effort within conversation for both hearing aid wearers and their communication partners. Levels of effort, in the form of speech production modifications, required to maintain successful spoken communication in a range of acoustic environments are compared to earlier reported results measured in unaided conversation conditions. Design Fifteen young adult normal-hearing participants and 15 older adult hearing-impaired participants were tested in pairs. Each pair consisted of one young normal-hearing participant and one older hearing-impaired participant. Hearing-impaired participants received directional hearing aid amplification, according to their audiogram, via a master hearing aid with gain provided according to the NAL-NL2 fitting formula. Pairs of participants were required to take part in naturalistic conversations through the use of a referential communication task. Each pair took part in five conversations, each of 5-min duration. During each conversation, participants were exposed to one of five different realistic acoustic environments presented through highly open headphones. The ordering of acoustic environments across experimental blocks was pseudorandomized. Resulting recordings of conversational speech were analyzed to determine the magnitude of speech modifications, in terms of vocal level and spectrum, produced by normal-hearing talkers as a function of both acoustic environment and the degree of high-frequency average hearing impairment of their conversation partner. Results The magnitude of spectral modifications of speech produced by normal-hearing talkers during conversations with aided hearing-impaired interlocutors was smaller than the speech modifications observed during conversations between the same pairs of participants in the absence of hearing aid amplification. Conclusions The provision of hearing aid amplification reduces the effort required to maintain communication in adverse conditions. This reduction in effort provides benefit to hearing-impaired individuals and also to the conversation partners of hearing-impaired individuals. By considering the impact of amplification on both sides of dyadic conversations, this approach contributes to an increased understanding of the likely impact of hearing impairment on everyday communication.


2021 ◽  
pp. 102986492110152
Author(s):  
Carl Hopkins ◽  
Saúl Maté-Cid ◽  
Robert Fulford ◽  
Gary Seiffert ◽  
Jane Ginsborg

This study investigated the perception and learning of relative pitch using vibrotactile stimuli by musicians with and without a hearing impairment. Notes from C3 to B4 were presented to the fingertip and forefoot. Pre- and post-training tests in which 420 pairs of notes were presented randomly were carried out without any feedback to participants. After the pre-training test, 16 short training sessions were carried out over six weeks with 72 pairs of notes per session and participants told whether their answers were correct. For amateur and professional musicians with normal hearing and professional musicians with a severe or profound hearing loss, larger pitch intervals were easier to identify correctly than smaller intervals. Musicians with normal hearing had a high success rate for relative pitch discrimination as shown by pre- and post-training tests, and when using the fingertips, there was no significant difference between amateur and professional musicians. After training, median scores on the tests in which stimuli were presented to the fingertip and forefoot were >70% for intervals of 3–12 semitones. Training sessions reduced the variability in the responses of amateur and professional musicians with normal hearing and improved their overall ability. There was no significant difference between the relative pitch discrimination abilities between one and 11 semitones, as shown by the pre-training test, of professional musicians with and without a severe/profound hearing loss. These findings indicate that there is potential for vibration to be used to facilitate group musical performance and music education in schools for the deaf.


Sign in / Sign up

Export Citation Format

Share Document