scholarly journals Molecular, ultrastructural and functional characterization of a Spanish family with Hermansky-Pudlak syndrome: role of insC974 in platelet function and clinical relevance

2003 ◽  
Vol 123 (1) ◽  
pp. 132-138 ◽  
Author(s):  
Rocio González-Conejero ◽  
José Rivera ◽  
Ginés Escolar ◽  
Isabel Zuazu-Jausoro ◽  
Vicente Vicente ◽  
...  
Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 201
Author(s):  
Laura Cortese ◽  
Pete W. Christopherson ◽  
Alessandra Pelagalli

Significant progress has been made in the functional characterization of canine platelets in the last two decades. The role of canine platelets in hemostasis includes their adhesion to the subendothelium, activation, and aggregation, leading to primary clot formation at the site of injury. Studies on canine platelet function and advancements in laboratory testing have improved the diagnosis and understanding of platelet-related disorders as well as the knowledge of the mechanisms behind these diseases. This review focuses on the most recent discoveries in canine platelet structure, function, and disorders; and discusses the efficacy of various tests in the diagnosis of platelet-related disorders. With the relatively recent discovery of angiogenetic and reparative effects of growth factors found in platelets, this review also summarizes the use of canine platelet-rich plasma (PRP) alone or in association with stem cells in regenerative therapy. The characterization of proteomic and lipidomic profiles and development of platelet gene therapy in veterinary species are areas of future study with potential for major therapeutic benefits.


2006 ◽  
Vol 74 (7) ◽  
pp. 3742-3755 ◽  
Author(s):  
Lakshmi Pillai ◽  
Jian Sha ◽  
Tatiana E. Erova ◽  
Amin A. Fadl ◽  
Bijay K. Khajanchi ◽  
...  

ABSTRACT Human diseases caused by species of Aeromonas have been classified into two major groups: septicemia and gastroenteritis. In this study, we reported the molecular and functional characterization of a new virulence factor, ToxR-regulated lipoprotein, or TagA, from a diarrheal isolate, SSU, of Aeromonas hydrophila. The tagA gene of A. hydrophila exhibited 60% identity with that of a recently identified stcE gene from Escherichia coli O157:H7, which encoded a protein (StcE) that provided serum resistance to the bacterium and prevented erythrocyte lysis by controlling classical pathway of complement activation by cleaving the complement C1-esterase inhibitor (C1-INH). We purified A. hydrophila TagA as a histidine-tagged fusion protein (rTagA) from E. coli DE3 strain using a T7 promoter-based pET30 expression vector and nickel affinity column chromatography. rTagA cleaved C1-INH in a time-dependent manner. The tagA isogenic mutant of A. hydrophila, unlike its corresponding wild-type (WT) or the complemented strain, was unable to cleave C1-INH, which is required to potentiate the C1-INH-mediated lysis of host and bacterial cells. We indeed demonstrated colocalization of C1-INH and TagA on the bacterial surface by confocal fluorescence microscopy, which ultimately resulted in increased serum resistance of the WT bacterium. Likewise, we delineated the role of TagA in contributing to the enhanced ability of C1-INH to inhibit the classical complement-mediated lysis of erythrocytes. Importantly, we provided evidence that the tagA mutant was significantly less virulent in a mouse model of infection (60%) than the WT bacterium at two 50% lethal doses, which resulted in 100% mortality within 48 h. Taken together, our data provided new information on the role of TagA as a virulence factor in bacterial pathogenesis. This is the first report of TagA characterization from any species of Aeromonas.


2007 ◽  
Vol 6 (6) ◽  
pp. 940-948 ◽  
Author(s):  
Carrie A. Davis ◽  
Michael P. S. Brown ◽  
Upinder Singh

ABSTRACT Pre-mRNA splicing is essential to ensure accurate expression of many genes in eukaryotic organisms. In Entamoeba histolytica, a deep-branching eukaryote, approximately 30% of the annotated genes are predicted to contain introns; however, the accuracy of these predictions has not been tested. In this study, we mined an expressed sequence tag (EST) library representing 7% of amoebic genes and found evidence supporting splicing of 60% of the testable intron predictions, the majority of which contain a GUUUGU 5′ splice site and a UAG 3′ splice site. Additionally, we identified several splice site misannotations, evidence for the existence of 30 novel introns in previously annotated genes, and identified novel genes through uncovering their spliced ESTs. Finally, we provided molecular evidence for the E. histolytica U2, U4, and U5 snRNAs. These data lay the foundation for further dissection of the role of RNA processing in E. histolytica gene expression.


2021 ◽  
Author(s):  
Wanda Biala-Leonhard ◽  
Laura Zanin ◽  
Stefano Gottardi ◽  
Rita de Brito Francisco ◽  
Silvia Venuti ◽  
...  

Nitrogen (N) as well as Phosphorus (P) are key nutrients determining crop productivity. Legumes have developed strategies to overcome nutrient limitation by e.g., forming a symbiotic relationship with N-fixing rhizobia and the release of P-mobilizing exudates and are thus able to grow without supply of N or P fertilizers. The legume-rhizobial symbiosis starts with root release of isoflavonoids, that act as signaling molecules perceived by compatible bacteria. Subsequently, bacteria release nod factors, which induce signaling cascades allowing the formation of functional N-fixing nodules. We report here the identification and functional characterization of a plasma membrane-localized MATE-type transporter (LaMATE2) involved in the release of genistein from white lupin roots. The LaMATE2 expression in the root is upregulated under N deficiency as well as low phosphate availability, two nutritional deficiencies that induce the release of this isoflavonoid. LaMATE2 silencing reduced genistein efflux and even more the formation of symbiotic nodules, supporting the crucial role of LaMATE2 in isoflavonoid release and nodulation. Furthermore, silencing of LaMATE2 limited the P-solubilization activity of lupin root exudates. Transport assays in yeast vesicles demonstrated that LaMATE2 acts as a proton-driven isoflavonoid transporter.


2018 ◽  
Vol 33 (12) ◽  
pp. 2091-2098 ◽  
Author(s):  
Neus Roca-Ayats ◽  
Pei Ying Ng ◽  
Natàlia Garcia-Giralt ◽  
Maite Falcó-Mascaró ◽  
Mónica Cozar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document