Equilibria of weak acids and organic Al complexes explain activity of H+ and Al3+ in a salt extract of exchangeable cations

1999 ◽  
Vol 50 (4) ◽  
pp. 675-686 ◽  
Author(s):  
A. Nissinen ◽  
H. Ilvesniemi ◽  
N. Tanskanen
2015 ◽  
Vol 2 (2) ◽  
pp. 148-158
Author(s):  
Surianto

Spodosol soil of Typic Placorthod sub-group of East Barito District is one of the problem soils with the presence of hardpan layer, low fertility, low water holding capacity, acid reaction and it is not suitable for oil palm cultivation without any properly specific management of land preparation and implemented best agronomic practices. A study was carried out to evaluate the soil characteristic of a big hole (A profile) and no big hole (B profile) system and comparative oil palm productivity among two planting systems. This study was conducted in Spodosol soil at oil palm plantation (coordinate X = 0281843 and Y = 9764116), East Barito District, Central Kalimantan Province on February 2014, by surveying of placic and ortstein depth and observing soil texture and chemical properties of 2 (two) oil palm's soil profiles that have been planted in five years. Big hole system of commercial oil palm field planting on the Spodosol soil area was designed for the specific purpose of minimizing the potential of a negative effect of shallow effective planting depth for oil palms growing due to the hardpan layer (placic and ortstein) presence as deep as 0.25 - 0.50 m. The big hole system is a planting hole type which was vertical-sided with 2.00 m x 1.50 m on top and bottom side and 3.00 m depth meanwhile the 2:1 drain was vertical-sided also with 1.50 m depth and 300 m length. Oil palm production was recorded from the year 2012 up to 2014. Results indicated that the fractions both big hole profile (A profile) and no big hole profile (B profile) were dominated by sands ranged from 60% to 92% and the highest sands content of non-big hole soil profile were found in A and E horizons (92%). Better distribution of sand and clay fractions content in between layers of big hole soil profiles of A profile sample is more uniform compared to the B profile sample. The mechanical holing and material mixing of soil materials of A soil profile among the upper and lower horizons i.e. A, E, B and C horizons before planting that resulted a better distribution of both soil texture (sands and clay) and chemical properties such as acidity value (pH), C-organic, N, C/N ratio, CEC, P-available and Exchangeable Bases. Investigation showed that exchangeable cations (Ca, Mg, K), were very low in soil layers (A profile) and horizons (B profile) investigated. The low exchangeable cations due to highly leached of bases to the lower layers and horizons. Besides, the palm which was planted on the big hole system showed good adaptation and response positively by growing well of tertiary and quaternary roots that the roots were penetrable into deeper rooting zone as much as >1.00 m depth. The roots can grow well and penetrate much deeper in A profile compared to the undisturbed hardpan layer (B profile). The FFB (fresh fruit bunches) production of the non-big hole block was higher than the big hole block for the first three years of production. This might be due to the high variation of monthly rainfall in-between years of observation from 2009 to 2014. Therefore, the hardness of placic and ortstein as unpenetrable agents by roots and water to prevent water loss and retain the water in the rhizosphere especially in the drier weather. In the high rainfall condition, the 2:1 drain to prevent water saturation in the oil palm rhizosphere by moving some water into the drain. Meanwhile, the disturbed soil horizon (big hole area) was drier than un disturbance immediately due to water removal to deeper layers. We concluded that both big hole and 2:1 drain are a suitable technology for Spodosol soil land especially in preparing palms planting to minimize the negative effect of the hardpan layer for oil palm growth.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1726
Author(s):  
Zhuorui Wang ◽  
Cong Cheng ◽  
Yongjuan Cheng ◽  
Lizhen Zheng ◽  
Daodao Hu

Traditionally, the acidity of paper-based relics was determined by an extraction method and using a pH meter. This method could not obtain the total acidity of the paper-based relics because it only detected the concentration of free protons in the aqueous soaking solution. To overcome this defect, a new method for determining the total acidity of paper-based relics has been established by using quaternary alloy quantum dots. The quantum dots, CdZnSeS, modified by p-Aminothiophenol (pATP) were prepared, and their composition and structure were characterized. The fluorescence behavior of prepared quantum dots with acidity was investigated. The following results were obtained. The fluorescence of CdZnSeS-pATP quantum dots could decrease with increases in acidity because pATP dissociated from the surfaces of the quantum dots due to protons or undissociated weak acids. Based on this feature, a method for determining the acidity of paper-based relics was constructed, and this method was used to evaluate the acidity of actual paper-based relics. Obviously, for a given paper sample, since both free protons and bound protons can be determined by this method, the acidity measured by this method is more reasonable than that by pH meter.


Author(s):  
Daiane Carvalho Baía ◽  
Fábio L. Olivares ◽  
Daniel B. Zandonadi ◽  
Cleiton de Paula Soares ◽  
Riccardo Spaccini ◽  
...  

Abstract Background Plants primed by humic acids showed physiological and molecular response against different abiotic stresses without the presence of stressor agents (salinity, drought, heavy metal toxicity). It is plausible that humic acids themselves can act as chemical priming substances in plants. We hypothesized that humic acids can trigger the weak acids stress response in cell plants acidifying the cytosol and thus eliciting the transduction signalling response cascade. Methods The dose–response curves of maize seedlings roots with different concentrations of humic, acetic and salicylic acids determined the most active and inhibitory concentration. These data were further used to evaluate changes on intracellular pH using BCECF-AM probe (2,7-bis(2-carboxyethyl)-5(and 6)-carboxyfluorescein, acetoxymethyl ester) and differential transcription level of genes related to weak stress response in plants by qPCR real time. Results Humic acids like short chain organic acids decrease the intracellular pH showed by the increased fluorescence of BCECF probe. The drop in cytosolic pH promoted by humic acids was not transient. We observed a high level of protein kinases related to cell energy-sensing and transcription factors associated to transduction of stress signalling. Conclusion The humic acids can be considered as a chemical priming agent, since in the appropriate concentration they can induce the typical plant abiotic stress response of weak acids inducing plant acclimation and enhancing the abiotic stress tolerance.


2020 ◽  
Vol 85 (16) ◽  
pp. 10951-10957
Author(s):  
Sebastian T. Jung ◽  
Joachim Podlech

Sign in / Sign up

Export Citation Format

Share Document