Abrupt change in primary productivity in a littoral zone of Lake Biwa with the development of a filamentous green-algal community

2001 ◽  
Vol 46 (5) ◽  
pp. 587-602 ◽  
Author(s):  
Kentaro Nozaki
1999 ◽  
Vol 14 (3) ◽  
pp. 233-242 ◽  
Author(s):  
Jotaro Urabe ◽  
Tatsuki Sekino ◽  
Kentaro Nozaki ◽  
Akihiro Tsuji ◽  
Chikage Yoshimizu ◽  
...  

Author(s):  
D. H. Cushing

Algal productive rates have rarely been estimated at sea, although many estimates have been made of primary productivity as g carbon/m2/day. A distinction may be drawn between productive rate and productivity, and it is in the use of the term ‘standing stock’. The latter is the quantity of living algal material per unit volume or beneath unit surface. The productive rate is the rate at which the standing stock reproduces itself; for a given species it is of course a division rate. It is expedient to use the term ‘division rate’ for a single species, but the term ‘productive rate’ may be used for the whole algal community. The productivity is the product of standing stock and productive rate and so contains in it the very great variations of standing stock that are the common experience of all planktologists.


1988 ◽  
Vol 49 (3) ◽  
pp. 175-183 ◽  
Author(s):  
Masami NAKANISHI ◽  
Tetsuya NARITA ◽  
Norio SUZUKI ◽  
Osamu MITAMURA

1973 ◽  
Vol 30 (5) ◽  
pp. 708-711 ◽  
Author(s):  
F. J. Ward ◽  
Masami Nakanishi

For an in situ experiment conducted in Shiozu Bay, Lake Biwa, Japan, primary productivity estimates from liquid scintillation radioactivity counts of wet algae were generally higher than those from Geiger–Müller radioactivity counts of desiccated algae. Values at 0 m were similar, the G–M estimate at 0.5 m was 10% higher, but from 3 to 13 m the liquid scintillation values ranged from 11 to 33% higher than G–M estimates. The 20-m estimates were low and similar. Differences were caused primarily by 14C losses during desiccation prior to G–M counting. Increasing loss rates between 0.5 and 3.0 m may have been caused by decreasing light intensity. On the basis of surface area, the estimate from liquid scintillation data was 27% greater than that obtained from G–M data.


Facies ◽  
2020 ◽  
Vol 67 (1) ◽  
Author(s):  
Marine Maillet ◽  
Wen-Tao Huang ◽  
Xiao Li ◽  
Zhen-Yuan Yang ◽  
Chang-Qing Guan ◽  
...  

Abstract The Pennsylvanian is characterized by intense paleoenvironmental changes related to glacio-eustatic sea-level fluctuations and major tectonic events, which affected the evolution of biocommunities. Most known Pennsylvanian tropical reefs and mounds are predominantly composed of calcareous algae (e.g. phylloid algae, Archaeolithophyllum), calcareous sponges, fenestrate bryozoans, Tubiphytes, and microbialites. However, in Houchang (southern China), the Late Pennsylvanian carbonate platform records a large coral reef lacking any analogs in age (Gzhelian), size (80–100 m thick) and composition (high biodiversity). The large coral reef developed at the border of the Luodian intraplatform basin. The intraplatform basin is characterized by the deposition of green algal grainstone, coated grain grainstone and bioclastic packstone, grainstone, floatstone and rudstone in shallow-waters. In the deep-water shelf, lithofacies are composed of burrowed bioclastic wackestone, microbioclastic peloidal packstone, grainstone, and fine-grained burrowed wackestone and packstone. In this context, the coral reef developed on a deep-shelf margin, in a moderate to low energy depositional environment, below the FWWB. The scarcity of Pennsylvanian coral reefs suggests global unfavorable conditions, which can be attributed to a complex pattern of several environmental factors, including seawater chemistry (aragonite seas), paleoclimatic cooling related to continental glaciation, and the biological competition with the more opportunistic and adaptive phylloid algal community that occupied similar platform margin paleoenvironments. The existence of the large Bianping coral reef in southern China, as well as a few additional examples of Pennsylvanian coralliferous bioconstructions, provides evidence that coral communities were able to endure the Late Paleozoic fluctuating paleoenvironmental conditions in specific settings. One of such settings appears to have been the deep shelf margin, where low light levels decreased competition with the phylloid algal community.


Sign in / Sign up

Export Citation Format

Share Document