scholarly journals α 2 ‐macroglobulin stimulation of protein tyrosine phosphorylation in macrophages via the mannose receptor for Fcγ receptor‐mediated phagocytosis activation

Immunology ◽  
1996 ◽  
Vol 89 (3) ◽  
pp. 436-441 ◽  
Author(s):  
M. MURAI ◽  
Y. ARAMAKI ◽  
S. TSUCHIYA
1995 ◽  
Vol 108 (1-2) ◽  
pp. 35-42 ◽  
Author(s):  
Michaela Luconi ◽  
Lorella Bonaccorsi ◽  
Csilla Krausz ◽  
Ginetta Gervasi ◽  
Gianni Forti ◽  
...  

1996 ◽  
Vol 271 (4) ◽  
pp. C1085-C1097 ◽  
Author(s):  
T. Ohtsuki ◽  
M. Matsumoto ◽  
K. Kitagawa ◽  
T. Mabuchi ◽  
K. Mandai ◽  
...  

Glutamate triggers neuronal degeneration after ischemia-reperfusion in the brain. However, the details of intracellular signal transduction that propagates cell death remain unknown. The present work investigated whether protein tyrosine phosphorylation mediates neuronal death in the ischemic brain. Transient forebrain ischemia for 5-10 min in Mongolian gerbils or intoxication with the glutamate analogue kainic acid (12 mg/kg) in Sprague-Dawley rats caused neuronal death selectively in the hippocampus 2-4 days or 1 day later, respectively. Under these conditions, 160-, 115-, 105-, 92-, and 85-kDa proteins showed a significant increase in tyrosyl residue phosphorylation selectively in the hippocampus 3-12 h after ischemia or 4-8 h after kainic acid-induced seizures. Tyrosine kinases, including pp60c-src, were activated without a change of tyrosine phosphatases. Administration of radicicol, a selective inhibitor of tyrosine kinases, attenuated stimulation of tyrosine phosphorylation and hippocampal degeneration after ischemia or kainic acid injection. The results suggest that protein tyrosine phosphorylation might propagate delayed neuronal death in the mature hippocampus through glutamate overload after ischemia-reperfusion.


1990 ◽  
Vol 269 (2) ◽  
pp. 431-436 ◽  
Author(s):  
C K Huang ◽  
V Bonak ◽  
G R Laramee ◽  
J E Casnellie

Protein tyrosine phosphorylation in rabbit peritoneal neutrophils was examined by immunoblotting with antibodies specific for phosphotyrosine. Stimulation of the neutrophils with chemotactic factor fMet-Leu-Phe (10 nM) caused rapid increases of tyrosine phosphorylation of several proteins with apparent molecular masses of (Group A) 54-58 kDa and 100-125 kDa and (Group B) 36-41 kDa. Stimulation of Group A proteins was observed by fMet-Leu-Phe (10 nM, maximum at 20 s) and A23187 (1 microM, 1 min). Stimulation of Group B proteins was observed by fMet-Leu-Phe (ED50 0.15 nM, 1 min), leukotriene B4 (ED50 0.15 nM, 1 min), phorbol 12-myristate 13-acetate (PMA) (ED50 25 ng/ml, 10 min) and partially by ionophore A23187 (1 microM, 1 min). Pretreatment of the cell with the protein kinase inhibitor H-7 (25 microM, 5 min) and PMA (0.1 microgram/ml, 3 min) partially inhibited the fMet-Leu-Phe effect. However, pretreatment of the cells with quin 2/AM (20 microM, 10 min) completely inhibited the fMet-Leu-Phe effect. The results indicate that rapid regulation of tyrosine phosphorylation is an early event occurring in stimulated neutrophils. Furthermore the effect of fMet-Leu-Phe on tyrosine phosphorylation may require Ca2+ mobilization and may partially require the activity of H-7-sensitive protein kinases.


1994 ◽  
Vol 72 (11) ◽  
pp. 1434-1439 ◽  
Author(s):  
Joseph Di Salvo ◽  
Gabrielle Pfitzer ◽  
Lori A. Semenchuk

Our studies are guided by the novel hypothesis that protein tyrosine phosphorylation is an important mechanism for regulating contraction of smooth muscle. Several lines of evidence are reviewed which suggest that enhanced tyrosine phosphorylation participates in mechanisms that regulate cytosolic Ca2+ and Ca2+ sensitivity for contraction. First, vanadate-induced contraction of guinea-pig taenia coli is functionally linked to enhanced protein tyrosine phosphorylation of at least three substrates, apparently resulting from vanadate-mediated inhibition of protein tyrosine phosphatase activity. Second, vanadate-induced contraction is dependent on extracellular Ca2+. Third, increases in cytosolic Ca2+ resulting from stimulation of αi-adrenergic receptors in cultured canine vascular smooth muscle cells are associated with enhanced tyrosine phosphorylation and are inhibited by genistein, a potent inhibitor of tyrosine kinase activity. Fourth, genistein markedly and reversibly suppresses Ca2+ sensitivity for contraction in ileal longitudinal smooth muscle permeabilized with staphylococcal α-toxin. Moreover, the same or similar substrates (e.g., 42–45, 70, 80–85, 95, 100, 110, 116, and 205 kDa) are tyrosine phosphorylated in response to Ca2+ or stimulation of muscarinic or αi-adrenergic receptors. Collectively, these data strongly suggest that tyrosine phosphorylation is an important mechanism for regulation of smooth muscle contraction.Key words: actin–myosin interaction, calcium sensitivity, genistein, permeabilized smooth muscle, tyrosine kinase activity, tyrosine phosphatase activity, vascular smooth muscle cells, vanadate.


1994 ◽  
Vol 126 (2) ◽  
pp. 575-588 ◽  
Author(s):  
C L Hall ◽  
C Wang ◽  
L A Lange ◽  
E A Turley

The molecular mechanisms whereby hyaluronan (HA) stimulates cell motility was investigated in a C-H-ras transformed 10T 1/2 fibroblast cell line (C3). A significant (p < 0.001) stimulation of C3 cell motility with HA (10 ng/ml) was accompanied by an increase in protein tyrosine phosphorylation as detected by anti-phosphotyrosine antibodies using immunoblot analysis and immunofluorescence staining of cells. Tyrosine phosphorylation of several proteins was found to be both rapid and transient with phosphorylation occurring within 1 min of HA addition and dissipating below control levels 10-15 min later. These responses were also elicited by an antibody generated against a peptide sequence within the HA receptor RHAMM. Treatment of cells with tyrosine kinase inhibitors (genistein, 10 micrograms/ml or herbimycin A, 0.5 micrograms/ml) or microinjection of anti-phosphotyrosine antibodies inhibited the transient protein tyrosine phosphorylation in response to HA as well as prevented HA stimulation of cell motility. To determine a link between HA-stimulated tyrosine phosphorylation and the resulting cell locomotion, cytoskeletal reorganization was examined in C3 cells plated on fibronectin and treated with HA or anti-RHAMM antibody. These agents caused a rapid assembly and disassembly of focal adhesions as revealed by immunofluorescent localization of vinculin. The time course with which HA and antibody induced focal adhesion turnover exactly paralleled the induction of transient protein tyrosine phosphorylation. In addition, phosphotyrosine staining colocalized with vinculin within structures in the lamellapodia of these cells. Notably, the focal adhesion kinase, pp125FAK, was rapidly phosphorylated and dephosphorylated after HA stimulation. These results suggest that HA stimulates locomotion via a rapid and transient protein tyrosine kinase signaling event mediated by RHAMM. They also provide a possible molecular basis for focal adhesion turnover, a process that is critical for cell locomotion.


1992 ◽  
Vol 176 (6) ◽  
pp. 1745-1750 ◽  
Author(s):  
L Azzoni ◽  
M Kamoun ◽  
T W Salcedo ◽  
P Kanakaraj ◽  
B Perussia

Binding of ligand to the alpha subunit of Fc gamma RIIIA(CD16), expressed at the natural killer (NK) cell membrane in association with homo or heterodimers of proteins of the zeta family, results in phosphorylation of several proteins on tyrosine residues. We have analyzed the role of protein tyrosine phosphorylation in the regulation of molecular events induced upon stimulation of Fc gamma RIIIA in NK cells and in T cells expressing the Fc gamma RIII alpha chain in association with endogenous zeta 2 homodimers and devoid of other (CD3, CD2) transducing molecules. Our data indicate that treatment of these cells with protein tyrosine kinase inhibitors prevents not only Fc gamma RIIIA-induced protein tyrosine phosphorylation but also phosphatidylinositol 4,5 diphosphate hydrolysis and increased intracellular Ca2+ concentration, indicating a primary role of tyrosine kinase(s) in the induction of these early activation events. Occupancy of Fc gamma RIIIA by ligand results in phospholipase C (PLC)-gamma 1 tyrosine phosphorylation in NK cells and in Fc gamma RIIIA-transfected CD3-/CD2- T cells, and induces functional activation of p56lck in Fc gamma RIIIA alpha/zeta 2-transfected T cells, suggesting the possibility that the receptor-induced PLC-gamma 1 activation occurs upon phosphorylation of its tyrosine residues mediated by this kinase and is, at least in part, responsible for the signal transduction mediated via CD16 upon ligand binding.


1993 ◽  
Vol 291 (1) ◽  
pp. 281-287 ◽  
Author(s):  
H M Lander ◽  
D M Levine ◽  
A Novogrodsky

Following our previous observation that haemin is mitogenic for human lymphocytes, we investigated the ability of haemin to enhance glucose uptake in these cells. We found that preincubation of human peripheral-blood mononuclear cells (PBMC) with haemin for 60 min increased up to 5-fold the rate of 2-deoxy-D-[1-3H]glucose uptake by the cells. Actinomycin D and cycloheximide did not inhibit the effect, and cytochalasin B completely blocked it. Among the metalloporphyrins tested (Fe-, Ni-, Co-, Zn- and Sn-protoporphyrin), only haemin (Fe-protoporphyrin) induced a marked increase in glucose uptake. Thiourea, a scavenger of oxygen free radicals, and 3-amino-1,2,4-triazole inhibited haemin-induced glucose uptake. Oxidants such as H2O2 and phenylarsine oxide were previously reported to stimulate protein tyrosine phosphorylation and to enhance glucose uptake. We found that incubation of PBMC with haemin resulted in an increase in protein tyrosine phosphatase (PTPase) activity, probably that identified as CD45. Similarly to haemin, we found that phytohaemagglutinin also enhanced PTPase activity. Haemin also activated the tyrosine kinase p56lck, which is negatively controlled by phosphorylation of Tyr-505 at the C-terminus, and increased protein tyrosine phosphorylation in these cells. Tyrphostins, specific inhibitors of tyrosine kinases, at low concentrations markedly enhanced glucose uptake and synergized with haemin in enhancing glucose uptake. At high doses, tyrphostins inhibited the effect of haemin. Taken together, we postulate that haemin enhancement of glucose uptake in human lymphocytes results from its stimulation of PTPase, followed by activation of tyrosine kinase p56lck, leading to an increase in protein tyrosine phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document