Adaptive evolutionary conservation: towards a unified concept for defining conservation units

2001 ◽  
Vol 10 (12) ◽  
pp. 2741-2752 ◽  
Author(s):  
Dylan J. Fraser ◽  
Louis Bernatchez
2014 ◽  
Vol 22 (4) ◽  
pp. 476 ◽  
Author(s):  
Xiong Min ◽  
Tian Shuang ◽  
Zhang Zhirong ◽  
Fan Dengmei ◽  
Zhang Zhiyong

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyung Seok Kim ◽  
Kevin J. Roe

AbstractDetailed information on species delineation and population genetic structure is a prerequisite for designing effective restoration and conservation strategies for imperiled organisms. Phylogenomic and population genomic analyses based on genome-wide double digest restriction-site associated DNA sequencing (ddRAD-Seq) data has identified three allopatric lineages in the North American freshwater mussel genus Cyprogenia. Cyprogenia stegaria is restricted to the Eastern Highlands and displays little genetic structuring within this region. However, two allopatric lineages of C. aberti in the Ozark and Ouachita highlands exhibit substantial levels (mean uncorrected FST = 0.368) of genetic differentiation and each warrants recognition as a distinct evolutionary lineage. Lineages of Cyprogenia in the Ouachita and Ozark highlands are further subdivided reflecting structuring at the level of river systems. Species tree inference and species delimitation in a Bayesian framework using single nucleotide polymorphisms (SNP) data supported results from phylogenetic analyses, and supports three species of Cyprogenia over the currently recognized two species. A comparison of SNPs generated from both destructively and non-destructively collected samples revealed no significant difference in the SNP error rate, quality and amount of ddRAD sequence reads, indicating that nondestructive or trace samples can be effectively utilized to generate SNP data for organisms for which destructive sampling is not permitted.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 673
Author(s):  
Fabián Augusto Aldaba Aldaba Núñez ◽  
Emily Veltjen ◽  
Esteban Manuel Martínez Martínez Salas ◽  
Marie-Stéphanie Samain

The Mexican state of Veracruz has suffered very high deforestation rates in the last few decades, and despite the establishment of protected areas and conservation projects, primary forest is now mainly persisting in mostly small, scattered, fragmented remnants. New species of Magnolia section Talauma in this state have been described with little to no reference to the already existing ones, potentially resulting in over-splitting, obscuring their taxonomic delineation and conservation status, and consequently conservation programs. To study the conservation units and their genetic diversity, we here employ 15 microsatellite markers on a highly representative sampling of 254 individuals of what are presumed to be five Magnolia species. The results support at least three species and maximum five main conservation units. We propose downgrading the latter to four, given morphological, ecological, demographical, and geographical considerations. Two out of the three sympatrically occurring species in the rainforest in the Los Tuxtlas volcanic area have weak genetic evidence to be considered separate species. Similarly, the individuals in the Sierra de Zongolica in central Veracruz, who bear a very high morphological and genetic similarity to Magnolia mexicana, have weak genetic evidence to be recognised as a separate species. Nonetheless, the individuals could be identified as Magnolia decastroi based on morphology, and further research including the full range of this species is recommended.


Sign in / Sign up

Export Citation Format

Share Document