A site-specific recombinase (RinQ) is required to exert incompatibility towards the symbiotic plasmid of Rhizobium etli

2002 ◽  
Vol 46 (4) ◽  
pp. 1023-1032 ◽  
Author(s):  
Verónica Quintero ◽  
Miguel A. Cevallos ◽  
Guillermo Dávila
2013 ◽  
Vol 195 (20) ◽  
pp. 4668-4677 ◽  
Author(s):  
R. Hernandez-Tamayo ◽  
C. Sohlenkamp ◽  
J. L. Puente ◽  
S. Brom ◽  
D. Romero

2004 ◽  
Vol 186 (22) ◽  
pp. 7538-7548 ◽  
Author(s):  
Susana Brom ◽  
Lourdes Girard ◽  
Cristina Tun-Garrido ◽  
Alejandro García-de los Santos ◽  
Patricia Bustos ◽  
...  

ABSTRACT Plasmid p42a from Rhizobium etli CFN42 is self-transmissible and indispensable for conjugative transfer of the symbiotic plasmid (pSym). Most pSym transconjugants also inherit p42a. pSym transconjugants that lack p42a always contain recombinant pSyms, which we designated RpSyms*. RpSyms* do not contain some pSym segments and instead have p42a sequences, including the replication and transfer regions. These novel recombinant plasmids are compatible with wild-type pSym, incompatible with p42a, and self-transmissible. The symbiotic features of derivatives simultaneously containing a wild-type pSym and an RpSym* were analyzed. Structural analysis of 10 RpSyms* showed that 7 shared one of the two pSym-p42a junctions. Sequencing of this common junction revealed a 53-bp region that was 90% identical in pSym and p42a, including a 5-bp central region flanked by 9- to 11-bp inverted repeats reminiscent of bacterial and phage attachment sites. A gene encoding an integrase-like protein (intA) was localized downstream of the attachment site on p42a. Mutation or the absence of intA abolished pSym transfer from a recA mutant donor. Complementation with the wild-type intA gene restored transfer of pSym. We propose that pSym-p42a cointegration is required for pSym transfer; cointegration may be achieved either through homologous recombination among large reiterated sequences or through IntA-mediated site-specific recombination between the attachment sites. Cointegrates formed through the site-specific system but resolved through RecA-dependent recombination or vice versa generate RpSyms*. A site-specific recombination system for plasmid cointegration is a novel feature of these large plasmids and implies that there is unique regulation which affects the distribution of pSym in nature due to the role of the cointegrate in conjugative transfer.


1989 ◽  
Vol 9 (4) ◽  
pp. 1507-1512 ◽  
Author(s):  
H Zhu ◽  
H Conrad-Webb ◽  
X S Liao ◽  
P S Perlman ◽  
R A Butow

All mRNAs of yeast mitochondria are processed at their 3' ends within a conserved dodecamer sequence, 5'-AAUAAUAUUCUU-3'. A dominant nuclear suppressor, SUV3-I, was previously isolated because it suppresses a dodecamer deletion at the 3' end of the var1 gene. We have tested the effects of SUV3-1 on a mutant containing two adjacent transversions within a dodecamer at the 3' end of fit1, a gene located within the 1,143-base-pair intron of the 21S rRNA gene, whose product is a site-specific endonuclease required in crosses for the quantitative transmission of that intron to 21S alleles that lack it. The fit1 dodecamer mutations blocked both intron transmission and dodecamer cleavage, neither of which was suppressed by SUV3-1 when present in heterozygous or homozygous configurations. Unexpectedly, we found that SUV3-1 completely blocked cleavage of the wild-type fit1 dodecamer and, in SUV3-1 homozygous crosses, intron conversion. In addition, SUV3-1 resulted in at least a 40-fold increase in the amount of excised intron accumulated. Genetic analysis showed that these phenotypes resulted from the same mutation. We conclude that cleavage of a wild-type dodecamer sequence at the 3' end of the fit1 gene is essential for fit1 expression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshihiro Horiguchi ◽  
Kayoko Kawamura ◽  
Yasuhiko Ohta

AbstractIn 2012, after the accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) that followed the Tohoku earthquake and tsunami in March 2011, no rock shell (Thais clavigera; currently recognized as Reishia clavigera; Gastropoda, Neogastropoda, Muricidae) specimens were found near the plant from Hirono to Futaba Beach (a distance of approximately 30 km). In July 2016, however, rock shells were again found to inhabit the area. From April 2017 to May 2019, we collected rock shell specimens monthly at two sites near the FDNPP (Okuma and Tomioka) and at a reference site ~ 120 km south of the FDNPP (Hiraiso). We examined the gonads of the specimens histologically to evaluate their reproductive cycle and sexual maturation. The gonads of the rock shells collected at Okuma, ~ 1 km south of the FDNPP, exhibited consecutive sexual maturation during the 2 years from April 2017 to May 2019, whereas sexual maturation of the gonads of specimens collected at Hiraiso was observed only in summer. The consecutive sexual maturation of the gonads of the specimens collected at Okuma might not represent a temporary phenomenon but rather a site-specific phenotype, possibly caused by specific environmental factors near the FDNPP.


Sign in / Sign up

Export Citation Format

Share Document