Modelling of reserve carbohydrate dynamics, regrowth and nodulation in a N 2 ‐fixing tree managed by periodic prunings

2000 ◽  
Vol 23 (10) ◽  
pp. 1025-1040 ◽  
Author(s):  
F. Berninger ◽  
E. Nikinmaa ◽  
R. Sievänen ◽  
P. Nygren
Author(s):  
E.O. Shmelkova ◽  
M.A. Slugina ◽  
A.A. Meleshin ◽  
E.V. Romanova

Работа посвящена разработке и тестированию универсальных праймеров для ПЦР-амплификации полноразмерных генов-ортологов β-фруктофуранозидазы (кислой вакуолярной инвертазы) у видов и сортов картофеля (Solanum tuberosum). Крахмал – основной источник энергии и резервный углевод, накапливающийся в амилопластах клубней. Образовавшаяся в результате фотосинтеза молекула глюкозы при реакции с фруктозой образует сахарозу – основную транспортную форму углеводов в растении. В клубни сахароза доставляется по флоэме (апопластный путь), где в межклеточном пространстве расщепляется до глюкозы и фруктозы, которые затем проникают в клетки паренхимы. Глюкоза служит в дальнейшем субстратом для синтеза крахмала в амилопластах. Однако при воздействии пониженных температур крахмал в клубнях картофеля разрушается до редуцирующих сахаров. Параллельно этому процессу идет ресинтез сахарозы до глюкозы и фруктозы за счет фермента кислой вакуолярной инвертазы (β-фруктофуранозидазы), кодируемой геном Pain-1. В совокупности эти процессы приводят к избыточному накоплению моносахаров в клубнях картофеля, так называемому холодовому осахариванию (cold-induced sweetening). При этом создаются условия для интенсивного образования меланоидинов, вызывающих потемнение мякоти картофеля, что значительно ухудшает товарное качество продукта. Таким образом, изучение гена Pain-1, кодирующего вакуолярную инвертазу, а именно, его идентификация и анализ структуры – важная задача, необходимая для поиска доноров, устойчивых к холодовому осахариванию. Первоочередная задача для этого – разработка и тестирование праймерных комбинаций, позволяющих амплифицировать полноразмерный ген у диких видов картофеля, а также сортов и линий культивируемого картофеля (S. tuberosum). В данной работе приведены результаты разработки и тестирования универсальных праймеров, с помощью которых можно амплифицировать как полноразмерные гены-ортологи, так и фрагменты гена Pain-1, а также подобраны оптимальные условия для проведения ПЦР реакции. Было разработано 6 праймерных комбинаций (PainF – PainR, PainF – Pain1exR, Pain1exF – Pain3exR, Pain2inF – Pain2inR, Pain3exF – Pain5exR, Pain5exF – PainR), среди которых комбинация PainF – PainR позволяла амплифицировать полноразмерный ген, остальные – внутренние и будут использованы в дальнейшем при секвенировании фрагментов исследуемого гена. Эти праймеры были успешно протестированы на 15 образцах, включающих представителей пяти дикорастущих видов картофеля (S. gourlay, S. chacoense, S. pinnatissectum, S. stoloniferum, S. vernei) и десяти сортов российской и зарубежной селекции (Гала, Ласунок, Ред Скарлетт, Рассет Бербанк, Мирас, Башкирский, Жуковский ранний, Матушка, Елизавета, Сударыня).The purpose of research is design and testing of universal primers for PCR amplification of full-length-fructofuranozidase orthologs genes (acid vacuolar invertase) in wild species and potato (Solanum tuberosum) varieties. Starch is the main source of energy and a reserve carbohydrate, that accumulates in tubers amyloplasts. Glucose molecule, produced by photosynthesis, reacts with fructose and forms sucrose, which is the main transport type of carbohydrates in the plant. In the tuber, sucrose is delivered via phloem (apoplast), where it splits into glucose and fructose, which then go to the parenchyma cells. Glucose is a further substrate for the starch synthesis in amyloplasts. However, low temperatures influence on potato tubers leads to starch break down to reducing sugars. In parallel to this process there is happens resynthesis of sucrose to glucose and fructose by acid vacuolar invertase enzyme (β-fructofuranosidase) encoded by Pain-1 gene. Together, these processes lead to an excessive accumulation of monosaccharides in potato tubers. This process also called as cold-induced sweetening. It creates conditions for the intensive formation of melanoidins, which cause a potato tubers darkening, which considerably impairs the commercial quality of the product. Thus, the study Pain-1 gene that encodes the vacuolar invertase (its identification and structure analysis) is an important task required for the search of donors resistant to cold-induced sweetening. The primary task for this is the design and testing of primer combinations that allow to amplify the full-length gene in wild potato species, varieties and lines of cultivated potato. In this work, we develop and test universal primers, that can amplify both full-length orthologs and fragments of the Pain-1 gene, and also select the optimal conditions for carrying out the PCR reaction. Summary. The purpose of research is design and testing of universal primers for PCR amplification of full-length-fructofuranozidase orthologs genes (acid vacuolar invertase) in wild species and potato (Solanum tuberosum) varieties. Starch is the main source of energy and a reserve carbohydrate, that accumulates in tubers amyloplasts. Glucose molecule, produced by photosynthesis, reacts with fructose and forms sucrose, which is the main transport type of carbohydrates in the plant. In the tuber, sucrose is delivered via phloem (apoplast), where it splits into glucose and fructose, which then go to the parenchyma cells. Glucose is a further substrate for the starch synthesis in amyloplasts. However, low temperatures influence on potato tubers leads to starch break down to reducing sugars. In parallel to this process there is happens resynthesis of sucrose to glucose and fructose by acid vacuolar invertase enzyme (β-fructofuranosidase) encoded by Pain-1 gene. Together, these processes lead to an excessive accumulation of monosaccharides in potato tubers. This process also called as cold-induced sweetening. It creates conditions for the intensive formation of melanoidins, which cause a potato tubers darkening, which considerably impairs the commercial quality of the product. Thus, the study Pain-1 gene that encodes the vacuolar invertase (its identification and structure analysis) is an important task required for the search of donors resistant to cold-induced sweetening. The primary task for this is the design and testing of primer combinations that allow to amplify the full-length gene in wild potato species, varieties and lines of cultivated potato. In this work, we develop and test universal primers, that can amplify both full-length orthologs and fragments of the Pain-1 gene, and also select the optimal conditions for carrying out the PCR reaction. In total 6 primer combinations were designed (PainF - PainR, PainF - Pain1exR, Pain1exF - Pain3exR, Pain2inF - Pain2inR, Pain3exF - Pain5exR, Pain5exF - PainR), where PainF - PainR primer combination allowed to amplify a full-sized gene, the rest are internal and will be used in the further fragments sequencing of the β-fructofuranosidase gene. These primers were successfully tested on 15 samples, including five wild species of potato (S. gourlay, S. chacoense, S. pinnatissectum, S. stoloniferum, S. vernei) and ten varieties of Russian and foreign breeding (Gala, Lasunok, Red Scarlet , Rasset Burbank, Miras, Bashkirsky, Zhukovsky ranniy, Matushka, Elizaveta, Sudaryna).


2020 ◽  
Vol 225 (6) ◽  
pp. 2314-2330
Author(s):  
Jessie M. Godfrey ◽  
Jason Riggio ◽  
Jessica Orozco ◽  
Paula Guzmán‐Delgado ◽  
Alana R. O. Chin ◽  
...  

1986 ◽  
Vol 20 (1-2) ◽  
pp. 87-92 ◽  
Author(s):  
Tineke Burger-Wiersma ◽  
Luuc R. Mur

1982 ◽  
Vol 67 (3) ◽  
pp. 311-322 ◽  
Author(s):  
C. M. Burney ◽  
P. G. Davis ◽  
K. M. Johnson ◽  
J. McN. Sieburth

2019 ◽  
Vol 39 ◽  
pp. 213-224 ◽  
Author(s):  
Kai Sun ◽  
Feng-Min Zhang ◽  
Ning Kang ◽  
Jia-Huan Gong ◽  
Wei Zhang ◽  
...  

Trees ◽  
2018 ◽  
Vol 32 (3) ◽  
pp. 777-790 ◽  
Author(s):  
Sara Palacio ◽  
Jesús J. Camarero ◽  
Melchor Maestro ◽  
Arben Q. Alla ◽  
Elena Lahoz ◽  
...  

Agronomy ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 302 ◽  
Author(s):  
Peng Ning ◽  
Yunfeng Peng ◽  
Felix Fritschi

Maize grain yield is considered to be highly associated with ear and leaf carbohydrate dynamics during the critical period bracketing silking and during the fast grain filling phase. However, a full understanding of how differences in N availability/plant N status influence carbohydrate dynamics and processes underlying yield formation remains elusive. Two field experiments were conducted to examine maize ear development, grain yield and the dynamics of carbohydrates in maize ear leaves and developing ears in response to differences in N availability. Increasing N availability stimulated ear growth during the critical two weeks bracketing silking and during the fast grain-filling phase, consequently resulting in greater maize grain yield. In ear leaves, sucrose and starch concentrations exhibited an obvious diurnal pattern at both silking and 20 days after silking, and N fertilization led to more carbon flux to sucrose biosynthesis than to starch accumulation. The elevated transcript abundance of key genes involved in starch biosynthesis and maltose export, as well as the sugar transporters (SWEETs) important for phloem loading, indicated greater starch turnover and sucrose export from leaves under N-fertilized conditions. In developing ears, N fertilization likely enhanced the cleavage of sucrose to glucose and fructose in the cob prior to and at silking and the synthesis from glucose and fructose to sucrose in the kernels after silking, and thus increasing kernel setting and filling. At the end, we propose a source-sink carbon partitioning framework to illustrates how N application influences carbon assimilation in leaves, transport, and conversions in developing reproductive tissues, ultimately leading to greater yield.


Sign in / Sign up

Export Citation Format

Share Document