scholarly journals Cloning, Sequencing and Expression of Immunoglobulin Variable Regions of Murine Monoclonal Antibodies Specific for the P1.7 and P1.16 PorA Protein Loops of Neisseria meningitidis

2003 ◽  
Vol 57 (5) ◽  
pp. 453-462 ◽  
Author(s):  
O. Ihle ◽  
K. J. Beckstrom ◽  
T. E. Michaelsen
2000 ◽  
Vol 7 (3) ◽  
pp. 390-395 ◽  
Author(s):  
J. Jelfs ◽  
R. Munro ◽  
E. Wedege ◽  
D. A. Caugant

ABSTRACT The ET-15 clone within the electrophoretic type (ET)-37 complex ofNeisseria meningitidis was first detected in Canada in 1986 and has since been associated with outbreaks of meningococcal disease in many parts of the world. While the majority of the strains of the ET-37 complex are serosubtype P1.5,2, serosubtype determination of ET-15 strains may often be incomplete, with either only one or none of the two variable regions (VRs) of the serosubtype PorA outer membrane protein reacting with monoclonal antibodies. DNA sequence analysis of the porA gene from ET-15 strains with one or both unidentified serosubtype determinants was undertaken to identify the genetic basis of the lack of reaction with the monoclonal antibodies. Fourteen different porA alleles were identified among 38 ET-15 strains from various geographic origins. The sequences corresponding to subtypes P1.5a,10d, P1.5,2, P1.5,10d, P1.5a,10k, and P1.5a,10a were identified in 18, 11, 2, 2, and 1 isolate, respectively. Of the remaining four strains, which all were nonserosubtypeable, two had a stop codon within the VR1 and the VR2, respectively, while in the other two the porA gene was interrupted by the insertion element, IS1301. Of the strains with P1.5,2 sequence, one had a stop codon between the VR1 and VR2, one had a four-amino-acid deletion outside the VR2, and another showed no expression of PorA on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our results reveal that numerous genetic events have occurred in theporA gene of the ET-15 clone in the short time of its epidemic spread. The magnitude of microevolutionary mechanisms available in meningococci and the remarkable genetic flexibility of these bacteria need to be considered in relation to PorA vaccine development.


1998 ◽  
Vol 40 (2) ◽  
pp. 113-117 ◽  
Author(s):  
Claudio Tavares SACCHI ◽  
Ana Paula Silva de LEMOS ◽  
Anne M. Whitney ◽  
Carmo Elias A. MELLES ◽  
Claude André SOLARI ◽  
...  

In the present study we examine the potential use of oligonucleotide probes to characterize Neisseria meningitidis serotypes without the use of monoclonal antibodies (MAbs). Antigenic diversity on PorB protein forms the bases of serotyping method. However, the current panel of MAbs underestimated, by at least 50% the PorB variability, presumably because reagents for several PorB variable regions (VRs) are lacking, or because a number of VR variants are not recognized by serotype-defining MAbs12. We analyzed the use of oligonucleotide probes to characterize serotype 10 and serotype 19 of N. meningitidis. The porB gene sequence for the prototype strain of serotype 10 was determined, aligned with 7 other porB sequences from different serotypes, and analysis of individual VRs were performed. The results of DNA probes 21U (VR1-A) and 615U (VR3-B) used against 72 N. meningitidis strains confirm that VR1 type A and VR3 type B encode epitopes for serotype-defined MAbs 19 and 10, respectively. The use of probes for characterizing serotypes possible can type 100% of the PorB VR diversity. It is a simple and rapid method specially useful for analysis of large number of samples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenbo Jiang ◽  
Julius Wong ◽  
Hyon-Xhi Tan ◽  
Hannah G. Kelly ◽  
Paul G. Whitney ◽  
...  

AbstractThe ferret is a key animal model for investigating the pathogenicity and transmissibility of important human viruses, and for the pre‐clinical assessment of vaccines. However, relatively little is known about the ferret immune system, due in part to a paucity of ferret‐reactive reagents. In particular, T follicular helper (Tfh) cells are critical in the generation of effective humoral responses in humans, mice and other animal models but to date it has not been possible to identify Tfh in ferrets. Here, we describe the screening and development of ferret-reactive BCL6, CXCR5 and PD-1 monoclonal antibodies. We found two commercial anti-BCL6 antibodies (clone K112-91 and clone IG191E/A8) had cross-reactivity with lymph node cells from influenza-infected ferrets. We next developed two murine monoclonal antibodies against ferret CXCR5 (clone feX5-C05) and PD-1 (clone fePD-CL1) using a single B cell PCR-based method. We were able to clearly identify Tfh cells in lymph nodes from influenza infected ferrets using these antibodies. The development of ferret Tfh marker antibodies and the identification of ferret Tfh cells will assist the evaluation of vaccine-induced Tfh responses in the ferret model and the design of novel vaccines against the infection of influenza and other viruses, including SARS-CoV2.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patamalai Boonserm ◽  
Songchan Puthong ◽  
Thanaporn Wichai ◽  
Sajee Noitang ◽  
Pongsak Khunrae ◽  
...  

AbstractIt is important to understand the amino acid residues that govern the properties of the binding between antibodies and ligands. We studied the binding of two anti-norfloxacins, anti-nor 132 and anti-nor 155, and the fluoroquinolones norfloxacin, enrofloxacin, ciprofloxacin, and ofloxacin. Binding cross-reactivities tested by an indirect competitive enzyme-linked immunosorbent assay indicated that anti-nor 132 (22–100%) had a broader range of cross-reactivity than anti-nor 155 (62–100%). These cross-reactivities correlated with variations in the numbers of interacting amino acid residues and their positions. Molecular docking was employed to investigate the molecular interactions between the fluoroquinolones and the monoclonal antibodies. Homology models of the heavy chain and light chain variable regions of each mAb 3D structure were docked with the fluoroquinolones targeting the crucial part of the complementarity-determining regions. The fluoroquinolone binding site of anti-nor 155 was a region of the HCDR3 and LCDR3 loops in which hydrogen bonds were formed with TYR (H:35), ASN (H:101), LYS (H:106), ASN (L:92), and ASN (L:93). These regions were further away in anti-nor 132 and could not contact the fluoroquinolones. Another binding region consisting of HIS (L:38) and ASP (H:100) was found for norfloxacin, enrofloxacin, and ciprofloxacin, whereas only ASP (H:100) was found for ofloxacin.


Sign in / Sign up

Export Citation Format

Share Document