The GxxxG motif of the transmembrane domain of subunit e is involved in the dimerization/oligomerization of the yeast ATP synthase complex in the mitochondrial membrane

2003 ◽  
Vol 270 (8) ◽  
pp. 1875-1884 ◽  
Author(s):  
Genevieve Arselin ◽  
Marie-France Giraud ◽  
Alain Dautant ◽  
Jacques Vaillier ◽  
Daniel Brethes ◽  
...  
2005 ◽  
Vol 4 (2) ◽  
pp. 346-355 ◽  
Author(s):  
Valerie Everard-Gigot ◽  
Cory D. Dunn ◽  
Brigid M. Dolan ◽  
Susanne Brunner ◽  
Robert E. Jensen ◽  
...  

ABSTRACT Mitochondrial F1Fo-ATP synthase complexes do not exist as physically independent entities but rather form dimeric and possibly oligomeric complexes in the inner mitochondrial membrane. Stable dimerization of two F1Fo-monomeric complexes involves the physical association of two membrane-embedded Fo-sectors. Previously, formation of the ATP synthase dimeric-oligomeric network was demonstrated to play a critical role in modulating the morphology of the mitochondrial inner membrane. In Saccharomyces cerevisiae, subunit e (Su e) of the Fo-sector plays a central role in supporting ATP synthase dimerization. The Su e protein is anchored to the inner membrane via a hydrophobic region located at its N-terminal end. The hydrophilic C-terminal region of Su e resides in the intermembrane space and contains a conserved coiled-coil motif. In the present study, we focused on characterizing the importance of these regions for the function of Su e. We created a number of C-terminal-truncated derivatives of the Su e protein and expressed them in the Su e null yeast mutant. Mitochondria were isolated from the resulting transformant strains, and a number of functions of Su e were analyzed. Our results indicate that the N-terminal hydrophobic region plays important roles in the Su e-dependent processes of mitochondrial DNA maintenance, modulation of mitochondrial morphology, and stabilization of the dimer-specific Fo subunits, subunits g and k. Furthermore, we show that the C-terminal coiled-coil region of Su e functions to stabilize the dimeric form of detergent-solubilized ATP synthase complexes. Finally, we propose a model to explain how Su e supports the assembly of the ATP synthase dimers-oligomers in the mitochondrial membrane.


1998 ◽  
Vol 143 (1) ◽  
pp. 207-215 ◽  
Author(s):  
Ing Swie Goping ◽  
Atan Gross ◽  
Josée N. Lavoie ◽  
Mai Nguyen ◽  
Ronald Jemmerson ◽  
...  

The proapoptotic protein BAX contains a single predicted transmembrane domain at its COOH terminus. In unstimulated cells, BAX is located in the cytosol and in peripheral association with intracellular membranes including mitochondria, but inserts into mitochondrial membranes after a death signal. This failure to insert into mitochondrial membrane in the absence of a death signal correlates with repression of the transmembrane signal-anchor function of BAX by the NH2-terminal domain. Targeting can be instated by deleting the domain or by replacing the BAX transmembrane segment with that of BCL-2. In stimulated cells, the contribution of the NH2 terminus of BAX correlates with further exposure of this domain after membrane insertion of the protein. The peptidyl caspase inhibitor zVAD-fmk partly blocks the stimulated mitochondrial membrane insertion of BAX in vivo, which is consistent with the ability of apoptotic cell extracts to support mitochondrial targeting of BAX in vitro, dependent on activation of caspase(s). Taken together, our results suggest that regulated targeting of BAX to mitochondria in response to a death signal is mediated by discrete domains within the BAX polypeptide. The contribution of one or more caspases may reflect an initiation and/or amplification of this regulated targeting.


2009 ◽  
Vol 385 (3) ◽  
pp. 912-923 ◽  
Author(s):  
Jana R. Herrmann ◽  
Johanna C. Panitz ◽  
Stephanie Unterreitmeier ◽  
Angelika Fuchs ◽  
Dmitrij Frishman ◽  
...  

Biochemistry ◽  
1992 ◽  
Vol 31 (49) ◽  
pp. 12451-12454 ◽  
Author(s):  
Tomihiko Higuti ◽  
Kayo Kuroiwa ◽  
Yoshihiro Kawamura ◽  
Yutaka Yoshihara

Sign in / Sign up

Export Citation Format

Share Document