scholarly journals Regulated Targeting of BAX to Mitochondria

1998 ◽  
Vol 143 (1) ◽  
pp. 207-215 ◽  
Author(s):  
Ing Swie Goping ◽  
Atan Gross ◽  
Josée N. Lavoie ◽  
Mai Nguyen ◽  
Ronald Jemmerson ◽  
...  

The proapoptotic protein BAX contains a single predicted transmembrane domain at its COOH terminus. In unstimulated cells, BAX is located in the cytosol and in peripheral association with intracellular membranes including mitochondria, but inserts into mitochondrial membranes after a death signal. This failure to insert into mitochondrial membrane in the absence of a death signal correlates with repression of the transmembrane signal-anchor function of BAX by the NH2-terminal domain. Targeting can be instated by deleting the domain or by replacing the BAX transmembrane segment with that of BCL-2. In stimulated cells, the contribution of the NH2 terminus of BAX correlates with further exposure of this domain after membrane insertion of the protein. The peptidyl caspase inhibitor zVAD-fmk partly blocks the stimulated mitochondrial membrane insertion of BAX in vivo, which is consistent with the ability of apoptotic cell extracts to support mitochondrial targeting of BAX in vitro, dependent on activation of caspase(s). Taken together, our results suggest that regulated targeting of BAX to mitochondria in response to a death signal is mediated by discrete domains within the BAX polypeptide. The contribution of one or more caspases may reflect an initiation and/or amplification of this regulated targeting.

1997 ◽  
Vol 137 (3) ◽  
pp. 555-562 ◽  
Author(s):  
Johanna M. Wahlberg ◽  
Martin Spiess

The orientation of signal–anchor proteins in the endoplasmic reticulum membrane is largely determined by the charged residues flanking the apolar, membrane-spanning domain and is influenced by the folding properties of the NH2-terminal sequence. However, these features are not generally sufficient to ensure a unique topology. The topogenic role of the hydrophobic signal domain was studied in vivo by expressing mutants of the asialoglycoprotein receptor subunit H1 in COS-7 cells. By replacing the 19-residue transmembrane segment of wild-type and mutant H1 by stretches of 7–25 leucine residues, we found that the length and hydrophobicity of the apolar sequence significantly affected protein orientation. Translocation of the NH2 terminus was favored by long, hydrophobic sequences and translocation of the COOH terminus by short ones. The topogenic contributions of the transmembrane domain, the flanking charges, and a hydrophilic NH2-terminal portion were additive. In combination these determinants were sufficient to achieve unique membrane insertion in either orientation.


2013 ◽  
Vol 91 (12) ◽  
pp. 1016-1024 ◽  
Author(s):  
Jia Li ◽  
Siran Wang ◽  
Jimei Yin ◽  
Linna Pan

Geraniin has previously been reported to possess extensive biological activity. In this study, we reported that geraniin is an inhibitor of tumor activity in vitro and in vivo. Geraniin suppressed the proliferation of A549 cells in a dose- and time-dependent manner. Geraniin arrested the cell cycle in the S phase and induced a significant accumulation of reactive oxygen species (ROS), as well as an increased percentage of cells with mitochondrial membrane potential (MMP) disruption. Western blot analysis showed that geraniin inhibited Bcl-2 expression and induced Bax expression to disintegrate the outer mitochondrial membrane and cause cytochrome c release. Mitochondrial cytochrome c release was associated with the activation of caspase-9 and caspase-3 cascades. Additionally, geraniin resulted in tumor growth inhibition in A549 xenografts. Our results indicate cytotoxic activity of geraniin towards cancer cells in vitro and in vivo.


2020 ◽  
Vol 117 (26) ◽  
pp. 14970-14977 ◽  
Author(s):  
Dominic T. Castanzo ◽  
Benjamin LaFrance ◽  
Andreas Martin

Msp1 is a conserved eukaryotic AAA+ ATPase localized to the outer mitochondrial membrane, where it is thought to extract mislocalized tail-anchored proteins. Despite recent in vivo and in vitro studies supporting this function, a mechanistic understanding of how Msp1 extracts its substrates is still lacking. Msp1’s ATPase activity depends on its hexameric state, and previous characterizations of the cytosolic AAA+ domain in vitro had proved challenging due to its monomeric nature in the absence of the transmembrane domain. Here, we used a hexamerization scaffold to study the substrate-processing mechanism of the soluble Msp1 motor, the functional homo-hexameric state of which was confirmed by negative-stain electron microscopy. We demonstrate that Msp1 is a robust bidirectional protein translocase that is able to unfold diverse substrates by processive threading through its central pore. This unfoldase activity is inhibited by Pex3, a membrane protein proposed to regulate Msp1 at the peroxisome.


2021 ◽  
Vol 7 (2) ◽  
pp. 130
Author(s):  
Nathan P. Wiederhold

Invasive infections caused by Candida that are resistant to clinically available antifungals are of increasing concern. Increasing rates of fluconazole resistance in non-albicans Candida species have been documented in multiple countries on several continents. This situation has been further exacerbated over the last several years by Candida auris, as isolates of this emerging pathogen that are often resistant to multiple antifungals. T-2307 is an aromatic diamidine currently in development for the treatment of invasive fungal infections. This agent has been shown to selectively cause the collapse of the mitochondrial membrane potential in yeasts when compared to mammalian cells. In vitro activity has been demonstrated against Candida species, including C. albicans, C. glabrata, and C. auris strains, which are resistant to azole and echinocandin antifungals. Activity has also been reported against Cryptococcus species, and this has translated into in vivo efficacy in experimental models of invasive candidiasis and cryptococcosis. However, little is known regarding the clinical efficacy and safety of this agent, as published data from studies involving humans are not currently available.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sachiko Iwai ◽  
Hanako O. Ikeda ◽  
Hisashi Mera ◽  
Kohei Nishitani ◽  
Motoo Saito ◽  
...  

AbstractCurrently there is no effective treatment available for osteoarthritis (OA). We have recently developed Kyoto University Substances (KUSs), ATPase inhibitors specific for valosin-containing protein (VCP), as a novel class of medicine for cellular protection. KUSs suppressed intracellular ATP depletion, endoplasmic reticulum (ER) stress, and cell death. In this study, we investigated the effects of KUS121 on chondrocyte cell death. In cultured chondrocytes differentiated from ATDC5 cells, KUS121 suppressed the decline in ATP levels and apoptotic cell death under stress conditions induced by TNFα. KUS121 ameliorated TNFα-induced reduction of gene expression in chondrocytes, such as Sox9 and Col2α. KUS121 also suppressed ER stress and cell death in chondrocytes under tunicamycin load. Furthermore, intraperitoneal administration of KUS121 in vivo suppressed chondrocyte loss and proteoglycan reduction in knee joints of a monosodium iodoacetate-induced OA rat model. Moreover, intra-articular administration of KUS121 more prominently reduced the apoptosis of the affected chondrocytes. These results demonstrate that KUS121 protects chondrocytes from stress-induced cell death in vitro and in vivo, and indicate that KUS121 is a promising novel therapeutic agent to prevent the progression of OA.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A738-A738
Author(s):  
Bryan Grogan ◽  
Reice James ◽  
Michelle Ulrich ◽  
Shyra Gardai ◽  
Ryan Heiser ◽  
...  

BackgroundRegulatory T cells (Tregs) play an important role in maintaining immune homeostasis, preventing excessive inflammation in normal tissues. In cancer, Tregs hamper anti-tumor immunosurveillance and facilitate immune evasion. Selective targeting of intratumoral Tregs is a potentially promising treatment approach. Orthogonal evaluation of tumor-infiltrating lymphocytes (TILs) in solid tumors in mice and humans have identified CCR8, and several tumor necrosis family receptors (TNFRs), including TNFSFR8 (CD30), as receptors differentially upregulated on intratumoral Tregs compared to normal tissue Tregs and other intratumoral T cells, making these intriguing therapeutic targets.Brentuximab vedotin (BV) is approved for classical Hodgkin lymphoma (cHL) across multiple lines of therapy including frontline use in stage III/IV cHL in combination with doxorubicin, vinblastine, and dacarbazine. BV is also approved for certain CD30-expressing T-cell lymphomas. BV is comprised of a CD30-directed monoclonal antibody conjugated to the highly potent microtubule-disrupting agent monomethyl auristatin E (MMAE).The activity of BV in lymphomas is thought to primarily result from tumor directed intracellular MMAE release, leading to mitotic arrest and apoptotic cell death.The role CD30 plays in normal immune function is unclear, with both costimulatory and proapoptotic roles described. CD30 is transiently upregulated following activation of memory T cells and expression has been linked to highly activated/suppressive IRF4+ effector Tregs.MethodsHere we evaluated the activity of BV on CD30-expressing T cell subsets in vitro and in vivo.ResultsTreatment of enriched T cell subsets with clinically relevant concentrations of BV drove selective depletion of CD30-expressing Tregs > CD30-expressingCD4+ T memory cells, with minimal effects on CD30-expressing CD8+ T memory cells. In a humanized xeno-GVHD model, treatment with BV selectively depleted Tregs resulting in accelerated wasting and robust T cell expansion. The observed differential activity on Tregs is likely attributable to significant increases in CD30 expression and reduced efflux pump activity relative to other T cell subsets. Interestingly, blockade of CD25 signaling prevents CD30 expression on T cell subsets without impacting proliferation, suggesting a link between CD25, the high affinity IL-2 receptor, and CD30 expression.ConclusionsTogether, these data suggest that BV may have an immunomodulatory effect through selective depletion of highly suppressive CD30-expressing Tregs.AcknowledgementsThe authors would like to thank Michael Harrison, PharmD for their assistance in abstract preparation.Ethics ApprovalAnimals studies were approved by and conducted in accordance with Seattle Genetics Institutional Care and Use Committee protocol #SGE-024.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Fangfang Tao ◽  
Yanrong Zhang ◽  
Zhiqian Zhang

Mitochondria are highly dynamic double-membrane organelles which play a well-recognized role in ATP production, calcium homeostasis, oxidation-reduction (redox) status, apoptotic cell death, and inflammation. Dysfunction of mitochondria has long been observed in a number of human diseases, including cancer. Targeting mitochondria metabolism in tumors as a cancer therapeutic strategy has attracted much attention for researchers in recent years due to the essential role of mitochondria in cancer cell growth, apoptosis, and progression. On the other hand, a series of studies have indicated that traditional medicinal herbs, including traditional Chinese medicines (TCM), exert their potential anticancer effects as an effective adjunct treatment for alleviating the systemic side effects of conventional cancer therapies, for reducing the risk of recurrence and cancer mortality and for improving the quality of patients’ life. An amazing feature of these structurally diverse bioactive components is that majority of them target mitochondria to provoke cancer cell-specific death program. The aim of this review is to summarize the in vitro and in vivo studies about the role of these herbs, especially their bioactive compounds in the modulation of the disturbed mitochondrial function for cancer therapy.


1985 ◽  
Vol 5 (3) ◽  
pp. 554-562 ◽  
Author(s):  
K G Miller ◽  
J Tower ◽  
B Sollner-Webb

To determine the size and location of the mouse rDNA promoter, we constructed systematic series of deletion mutants approaching the initiation site from the 5' and 3' directions. These templates were transcribed in vitro under various conditions with S-100 and whole-cell extracts. Surprisingly, the size of the rDNA region that determines the level of transcription differed markedly, depending on the reaction conditions. In both kinds of cell extracts, the apparent 5' border of the promoter was at residue ca. -27 under optimal transcription conditions, but as reaction conditions became less favorable, the 5' border moved progressively out to residues -35, -39, and -45. The complete promoter, however, extends considerably further, for under other nonoptimal conditions, we observed major effects of promoter domains extending in the 5' direction to positions ca. -100 and -140. In contrast, the apparent 3' border of the mouse rDNA promoter was at residue ca. +9 under all conditions examined. We also show that the subcloned rDNA region from -39 to +9 contains sufficient information to initiate accurately and that the region between +2 and +9 can influence the specificity of initiation. These data indicate that, although the polymerase I transcription factors recognize and accurately initiate with only the sequences downstream of residue -40, sequences extending out to residue -140 greatly favor the initiation reaction; presumably, this entire region is involved in rRNA transcription in vivo.


2012 ◽  
Vol 86 (16) ◽  
pp. 8592-8601 ◽  
Author(s):  
Charlotte Mahiet ◽  
Ayla Ergani ◽  
Nicolas Huot ◽  
Nicolas Alende ◽  
Ahmed Azough ◽  
...  

Herpes simplex virus 1 (HSV-1) is a human pathogen that leads to recurrent facial-oral lesions. Its 152-kb genome is organized in two covalently linked segments, each composed of a unique sequence flanked by inverted repeats. Replication of the HSV-1 genome produces concatemeric molecules in which homologous recombination events occur between the inverted repeats. This mechanism leads to four genome isomers (termed P, IS, IL, and ILS) that differ in the relative orientations of their unique fragments. Molecular combing analysis was performed on DNA extracted from viral particles and BSR, Vero, COS-7, and Neuro-2a cells infected with either strain SC16 or KOS of HSV-1, as well as from tissues of experimentally infected mice. Using fluorescence hybridization, isomers were repeatedly detected and distinguished and were accompanied by a large proportion of noncanonical forms (40%). In both cell and viral-particle extracts, the distributions of the four isomers were statistically equivalent, except for strain KOS grown in Vero and Neuro-2a cells, in which P and IS isomers were significantly overrepresented. In infected cell extracts, concatemeric molecules as long as 10 genome equivalents were detected, among which, strikingly, the isomer distributions were equivalent, suggesting that any such imbalance may occur during encapsidation.In vivo, for strain KOS-infected trigeminal ganglia, an unbalanced distribution distinct from the onein vitrowas observed, along with a considerable proportion of noncanonical assortment.


Blood ◽  
2004 ◽  
Vol 103 (7) ◽  
pp. 2691-2698 ◽  
Author(s):  
Michael D. Rosenblum ◽  
Edit Olasz ◽  
Jeffery E. Woodliff ◽  
Bryon D. Johnson ◽  
Marja C. Konkol ◽  
...  

Abstract During apoptotic cell death, biochemical processes modify self-proteins and create potential autoantigens. To maintain self-tolerance in the face of natural cell turnover, the immune system must prevent or control responses to apoptosis-associated autoantigens or risk autoimmunity. The molecular mechanisms governing this process remain largely unknown. Here, we show that expression of the immunoregulatory protein CD200 increases as murine dendritic cells (DCs) undergo apoptosis. We define CD200 as a p53-target gene and identify both p53- and caspase-dependent pathways that control CD200 expression during apoptosis. CD200 expression on apoptotic DCs diminishes proinflammatory cytokine production in response to self-antigens in vitro and is required for UVB-mediated tolerance to haptenated self-proteins in vivo. Up-regulation of CD200 may represent a novel mechanism, whereby immune reactivity to apoptosis-associated self-antigens is suppressed under steady state conditions. (Blood. 2004;103: 2691-2698)


Sign in / Sign up

Export Citation Format

Share Document