Hydrolysis of phytic acid by intrinsic plant and supplemented microbial phytase (Aspergillus niger) in the stomach and small intestine of minipigs fitted with re-entrant cannulas. 3. Hydrolysis of phytic acid (IP6) and occurrence of hydrolysis products (IP5, IP4, IP3 and IP2)

2001 ◽  
Vol 85 (11-12) ◽  
pp. 420-430 ◽  
Author(s):  
C. Rapp ◽  
H.-J. Lantzsch ◽  
W. Drochner
2005 ◽  
Vol 58 (5) ◽  
pp. 267-272 ◽  
Author(s):  
Akiko Matsuo ◽  
Kenji Sato ◽  
Yasushi Nakamura ◽  
Kozo Ohtsuki

2015 ◽  
Vol 12 (13) ◽  
pp. 4175-4184 ◽  
Author(s):  
C. von Sperber ◽  
F. Tamburini ◽  
B. Brunner ◽  
S. M. Bernasconi ◽  
E. Frossard

Abstract. Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (myo-inositol hexakisphosphate, IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields available Pi and less phosphorylated inositol derivates as products. The hydrolysis of organic P compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'-monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as a substrate were prepared. During the hydrolysis of IP6 by phytase, four of the six Pi were released, and one oxygen atom from water was incorporated into each Pi. This incorporation of oxygen from water into Pi was subject to an apparent inverse isotopic fractionation (ϵ ~ 6 to 10 ‰), which was similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ~ 7 ‰), where less than three Pi were released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ~ −12 ‰), similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ϵ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking substrate dependency of the isotopic fractionation could be attributed to a difference in the δ18O values of the C–O–P bridging and non-bridging oxygen atoms in organic phosphate compounds.


1998 ◽  
Vol 78 (2) ◽  
pp. 175-180 ◽  
Author(s):  
Erika Skoglund ◽  
Matti Näsi ◽  
Ann-Sofie Sandberg

The degradation of phytate (myo-inositol hexaphosphate) in a barley-rapeseed meal (80:20) diet due to supplemented Aspergillus niger phytase and steeping (soaking at 40 °C for 3 h with feed to water ratio 1 kg:1 L) with whey was studied in eight growing pigs (initial weight 27.8 kg). Phytate and its hydrolysis products (inositol penta-, tetra- and triphosphates, abbreviated IP5, IP4 and IP3) in diets and feces were determined using ion-pair high-performance liquid chromatography (HPLC). Different isomeric forms of inositol tetra- and pentaphosphates were studied utilizing high-performance ion chromatography (HPIC). Supplementing the diet with microbial phytase resulted in a 47% reduction in the amount of fecal phytate. Whey steeping of the diet reduced fecal phytate by 35%. Further reduction of the amount of fecal phytate (64%) was demonstrated in pigs fed the diet both steeped with whey and supplemented with microbial phytase, compared with pigs fed the untreated diet. Identification of IP4 and IP5 isomers in fecal samples showed which kind of phytase enzyme was active during phytate hydrolysis in the digestive tract. From these data, it was concluded that pigs fed the basal or whey steeped diet, without supplemented microbial phytase, had higher relative fecal amounts of DL-Ins(1,2,3,4,5)P5, compared with pigs fed the microbial phytase supplemented diets. Adding microbial phytase to the diet increased the relative amount of DL-Ins(1,2,4,5,6)P5 in feces. With whey steeping of the diet, the relative amount of DL-Ins(1,2,3,4)P4 isomer in feces was increased and the relative amount of DL-Ins(1,2,5,6)P4 isomer was decreased. Key words: Inositol phosphates, steeping, Aspergillus niger phytase, pig


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1360
Author(s):  
Ekaterina Budenkova ◽  
Stanislav Sukhikh ◽  
Svetlana Ivanova ◽  
Olga Babich ◽  
Vyacheslav Dolganyuk ◽  
...  

Enzymatic hydrolysis of cellulose-containing raw materials, using Aspergillus niger, were studied. Filter paper, secondary cellulose-containing or starch-containing raw materials, miscanthus cellulose after alkaline or acid pretreatment, and wood chip cellulose, were used as substrates. The study focused on a wild A. niger strain, treated, or not (control), by ultraviolet (UV) irradiations for 45, 60, or 120 min (UV45, UV60, or UV120), or by UV irradiation for 120 min followed by a chemical treatment with NaN3 + ItBr for 30 min or 80 min (UV120 + CH30 or UV120 + CH80). A mixture of all the A. niger strains (MIX) was also tested. A citrate buffer, at 50 mM, wasthe most suitable for enzymatic hydrolysis. As the UV exposure time increased to 2 h, the cellulase activity of the surviving culturewas increased (r = 0.706; p < 0.05). The enzymatic activities of the obtained strains, towards miscanthus cellulose, wood chips, and filter paper, were inferior to those obtained with commercial enzymes (8.6 versus 9.1 IU), in some cases. Under stationary hydrolysis at 37 °C, pH = 4.7, the enzymatic activity of A. niger UV120 + CH30 was 24.9 IU. The enzymatic hydrolysis of secondary raw materials, using treated A. niger strains, was themost effective at 37 °C. Similarly, the most effective treatment of miscanthus cellulose and wood chips occurred at 50 °C. The maximum conversion of cellulose to glucose was observed using miscanthus cellulose (with alkaline pretreatment), and the minimum conversion was observed when using wood chips. The greatest value of cellulase activity was evidenced in the starch-containing raw materials, indicating that A. niger can ferment not only through cellulase activity, but also via an amylolytic one.


1992 ◽  
Vol 55 (3) ◽  
pp. 425-430 ◽  
Author(s):  
S. Beers ◽  
A. W. Jongbloed

AbstractA total of 384 piglets from a three-way cross Yorkshire ♂ × (Finnish Landrace ♂ × Dutch Landrace♀) ♀ in the live-weight range of 11 to 25 kg were used in a feeding trial. The effect of supplementary microbial phytase from Aspergillus niger var. Van Tieghem on performance (average daily gain (ADG), average daily food intake (ADFI) and food conversion ratio (FCR)) and apparent digestibility of total phosphorus (P), in comparison with a non-supplemented basal diet or a diet supplemented with one or two levels of monocalcium phosphate (MCP), were studied.The piglets were allotted to 12 blocks. Within each block, four experimental diets were offered ad libitum for a period of 4 weeks i.e. (1) basal diet; (2) basal diet + 1·0 g P, from MCP per kg diet; (3) basal diet + 1·9 g P, from MCP per kg diet; and (4) basal diet + 1450 phytase units (PTU) per kg diet. The diets, with added chromium III oxide as a marker, were cold pelleted without steam at a temperature not above 60°C to avoid a possible inactivation of the phytase. In all diets the ratio calcium: digestible P was intended to be constant.Adding 1450 PTU of Aspergillus niger phytase enhanced the apparent digestibility of P by proportionately 0·216 when compared with diet 1 and by proportionately 0·100 compared with diet 3. In addition, significantly higher ADG and ADFI and better FCR were noted in pigs receiving supplementary microbial phytase than in pigs on any other treatment. The content of digestible P of the diet with added phytase, however, zvas between the two levels of the diets with added MCP.


2017 ◽  
Vol 2017 ◽  
pp. 1-23 ◽  
Author(s):  
Doris C. Niño-Gómez ◽  
Claudia M. Rivera-Hoyos ◽  
Edwin D. Morales-Álvarez ◽  
Edgar A. Reyes-Montaño ◽  
Nury E. Vargas-Alejo ◽  
...  

Phytases are used for feeding monogastric animals, because they hydrolyze phytic acid generating inorganic phosphate. Aspergillus niger 3-phytase A (PDB: 3K4Q) and 3-phytase B (PDB: 1QFX) were characterized using bioinformatic tools. Results showed that both enzymes have highly conserved catalytic pockets, supporting their classification as histidine acid phosphatases. 2D structures consist of 43% alpha-helix, 12% beta-sheet, and 45% others and 38% alpha-helix, 12% beta-sheet, and 50% others, respectively, and pI 4.94 and 4.60, aliphatic index 72.25 and 70.26 and average hydrophobicity of −0,304 and −0.330, respectively, suggesting aqueous media interaction. Glycosylation and glycation sites allowed detecting zones that can affect folding and biological activity, suggesting fragmentation. Docking showed that H59 and H63 act as nucleophiles and that D339 and D319 are proton donor residues. MW of 3K4Q (48.84 kDa) and 1QFX (50.78 kDa) is similar; 1QFX forms homodimers which will originate homotetramers with several catalytic center accessible to the ligand. 3K4Q is less stable (instability index 45.41) than 1QFX (instability index 33.66), but the estimated lifespan for 3K4Q is superior. Van der Waals interactions generate hydrogen bonds between the active center and O2 or H of the phytic acid phosphate groups, providing greater stability to these temporal molecular interactions.


2019 ◽  
Vol 46 (2) ◽  
pp. 161-169
Author(s):  
Marija Ćorović ◽  
Milica Simović ◽  
Ana Milivojević ◽  
Katarina Banjanac ◽  
Katarina Katić ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document