scholarly journals Hydrolysis of Phytic Acid in Brown-Rice Bread by Aspergillus niger Phytase

2005 ◽  
Vol 58 (5) ◽  
pp. 267-272 ◽  
Author(s):  
Akiko Matsuo ◽  
Kenji Sato ◽  
Yasushi Nakamura ◽  
Kozo Ohtsuki
2015 ◽  
Vol 12 (13) ◽  
pp. 4175-4184 ◽  
Author(s):  
C. von Sperber ◽  
F. Tamburini ◽  
B. Brunner ◽  
S. M. Bernasconi ◽  
E. Frossard

Abstract. Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (myo-inositol hexakisphosphate, IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields available Pi and less phosphorylated inositol derivates as products. The hydrolysis of organic P compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'-monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as a substrate were prepared. During the hydrolysis of IP6 by phytase, four of the six Pi were released, and one oxygen atom from water was incorporated into each Pi. This incorporation of oxygen from water into Pi was subject to an apparent inverse isotopic fractionation (ϵ ~ 6 to 10 ‰), which was similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ~ 7 ‰), where less than three Pi were released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ~ −12 ‰), similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ϵ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking substrate dependency of the isotopic fractionation could be attributed to a difference in the δ18O values of the C–O–P bridging and non-bridging oxygen atoms in organic phosphate compounds.


2014 ◽  
Vol 69 (3) ◽  
pp. 261-267 ◽  
Author(s):  
Patricio J. Cáceres ◽  
Cristina Martínez-Villaluenga ◽  
Lourdes Amigo ◽  
Juana Frias

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1360
Author(s):  
Ekaterina Budenkova ◽  
Stanislav Sukhikh ◽  
Svetlana Ivanova ◽  
Olga Babich ◽  
Vyacheslav Dolganyuk ◽  
...  

Enzymatic hydrolysis of cellulose-containing raw materials, using Aspergillus niger, were studied. Filter paper, secondary cellulose-containing or starch-containing raw materials, miscanthus cellulose after alkaline or acid pretreatment, and wood chip cellulose, were used as substrates. The study focused on a wild A. niger strain, treated, or not (control), by ultraviolet (UV) irradiations for 45, 60, or 120 min (UV45, UV60, or UV120), or by UV irradiation for 120 min followed by a chemical treatment with NaN3 + ItBr for 30 min or 80 min (UV120 + CH30 or UV120 + CH80). A mixture of all the A. niger strains (MIX) was also tested. A citrate buffer, at 50 mM, wasthe most suitable for enzymatic hydrolysis. As the UV exposure time increased to 2 h, the cellulase activity of the surviving culturewas increased (r = 0.706; p < 0.05). The enzymatic activities of the obtained strains, towards miscanthus cellulose, wood chips, and filter paper, were inferior to those obtained with commercial enzymes (8.6 versus 9.1 IU), in some cases. Under stationary hydrolysis at 37 °C, pH = 4.7, the enzymatic activity of A. niger UV120 + CH30 was 24.9 IU. The enzymatic hydrolysis of secondary raw materials, using treated A. niger strains, was themost effective at 37 °C. Similarly, the most effective treatment of miscanthus cellulose and wood chips occurred at 50 °C. The maximum conversion of cellulose to glucose was observed using miscanthus cellulose (with alkaline pretreatment), and the minimum conversion was observed when using wood chips. The greatest value of cellulase activity was evidenced in the starch-containing raw materials, indicating that A. niger can ferment not only through cellulase activity, but also via an amylolytic one.


1992 ◽  
Vol 55 (3) ◽  
pp. 425-430 ◽  
Author(s):  
S. Beers ◽  
A. W. Jongbloed

AbstractA total of 384 piglets from a three-way cross Yorkshire ♂ × (Finnish Landrace ♂ × Dutch Landrace♀) ♀ in the live-weight range of 11 to 25 kg were used in a feeding trial. The effect of supplementary microbial phytase from Aspergillus niger var. Van Tieghem on performance (average daily gain (ADG), average daily food intake (ADFI) and food conversion ratio (FCR)) and apparent digestibility of total phosphorus (P), in comparison with a non-supplemented basal diet or a diet supplemented with one or two levels of monocalcium phosphate (MCP), were studied.The piglets were allotted to 12 blocks. Within each block, four experimental diets were offered ad libitum for a period of 4 weeks i.e. (1) basal diet; (2) basal diet + 1·0 g P, from MCP per kg diet; (3) basal diet + 1·9 g P, from MCP per kg diet; and (4) basal diet + 1450 phytase units (PTU) per kg diet. The diets, with added chromium III oxide as a marker, were cold pelleted without steam at a temperature not above 60°C to avoid a possible inactivation of the phytase. In all diets the ratio calcium: digestible P was intended to be constant.Adding 1450 PTU of Aspergillus niger phytase enhanced the apparent digestibility of P by proportionately 0·216 when compared with diet 1 and by proportionately 0·100 compared with diet 3. In addition, significantly higher ADG and ADFI and better FCR were noted in pigs receiving supplementary microbial phytase than in pigs on any other treatment. The content of digestible P of the diet with added phytase, however, zvas between the two levels of the diets with added MCP.


Sign in / Sign up

Export Citation Format

Share Document