scholarly journals Lovastatin induced cytokine-mediated inducible nitric oxide synthase (INOS) expression in brain transformed cell lines

2008 ◽  
Vol 81 ◽  
pp. 54-56
Author(s):  
R. Rattan ◽  
S. Giri ◽  
I. Singh
2000 ◽  
Vol 68 (12) ◽  
pp. 7087-7093 ◽  
Author(s):  
Y.-H. Li ◽  
Z.-Q. Yan ◽  
J. Skov Jensen ◽  
K. Tullus ◽  
A. Brauner

ABSTRACT Chronic lung disease (CLD) of prematurity is an inflammatory disease with a multifactorial etiology. The importance ofUreaplasma urealyticum in the development of CLD is debated, and steroids produce some improvement in neonates with this disease. In the present study, the capability of U. urealyticum to stimulate rat alveolar macrophages to produce nitric oxide (NO), express inducible nitric oxide synthase (iNOS), and activate nuclear factor κB (NF-κB) in vitro was characterized. The effect of NO on the growth of U. urealyticum was also investigated. In addition, the impact of dexamethasone and budesonide on these processes was examined. We found that U. urealyticum antigen (≥4 × 107 color-changing units/ml) stimulated alveolar macrophages to produce NO in a dose- and time-dependent manner (P < 0.05). This effect was further enhanced by gamma interferon (100 IU/ml; P < 0.05) but was attenuated by budesonide and dexamethasone (10−4 to 10−6 M) (P < 0.05). The mRNA and protein levels of iNOS were also induced in response to U. urealyticum and inhibited by steroids.U. urealyticum antigen triggered NF-κB activation, a possible mechanism for the induced iNOS expression, which also was inhibited by steroids. NO induced by U. urealyticum caused a sixfold reduction of its own growth after infection for 10 h. Our findings imply that U. urealyticum may be an important factor in the development of CLD. The host defense response againstU. urealyticum infection may also be influenced by NO. The down-regulatory effect of steroids on NF-κB activation, iNOS expression, and NO production might partly explain the beneficial effect of steroids in neonates with CLD.


2001 ◽  
Vol 34 ◽  
pp. 83
Author(s):  
P.L. Majano ◽  
C. Garcia-Monzon ◽  
U. Latasa ◽  
E. Garcia-Trevijano ◽  
F.J. Corrales ◽  
...  

2004 ◽  
Vol 72 (11) ◽  
pp. 6666-6675 ◽  
Author(s):  
Robert E. Brennan ◽  
Kasi Russell ◽  
Guoquan Zhang ◽  
James E. Samuel

ABSTRACT Host control of Coxiella burnetii infections is believed to be mediated primarily by activated monocytes/macrophages. The activation of macrophages by cytokines leads to the production of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI) that have potent antimicrobial activities. The contributions of ROI and RNI to the inhibition of C. burnetii replication were examined in vitro by the use of murine macrophage-like cell lines and primary mouse macrophages. A gamma interferon (IFN-γ) treatment of infected cell lines and primary macrophages resulted in an increased production of nitric oxide (NO) and hydrogen peroxide (H2O2) and a significant inhibition of C. burnetii replication. The inhibition of replication was reversed in the murine cell line J774.16 upon the addition of either the inducible nitric oxide synthase (iNOS) inhibitor NG-monomethyl-l-arginine (NGMMLA) or the H2O2 scavenger catalase. IFN-γ-treated primary macrophages from iNOS−/− and p47phox−/− mice significantly inhibited replication but were less efficient at controlling infection than IFN-γ-treated wild-type macrophages. To investigate the contributions of ROI and RNI to resistance to infection, we performed in vivo studies, using C57BL/6 wild-type mice and knockout mice lacking iNOS or p47phox. Both iNOS−/− and p47phox−/− mice were attenuated in the ability to control C. burnetii infection compared to wild-type mice. Together, these results strongly support a role for both RNI and ROI in the host control of C. burnetii infection.


2008 ◽  
Vol 295 (1) ◽  
pp. L96-L103 ◽  
Author(s):  
Viktor Brovkovych ◽  
Xiao-Pei Gao ◽  
Evan Ong ◽  
Svitlana Brovkovych ◽  
Marie-Luise Brennan ◽  
...  

The myeloperoxidase (MPO)-hydrogen peroxide-halide system is an efficient oxygen-dependent antimicrobial component of polymorphonuclear leukocyte (PMN)-mediated host defense. However, MPO deficiency results in few clinical consequences indicating the activation of compensatory mechanisms. Here, we determined possible mechanisms protecting the host using MPO−/−mice challenged with live gram-negative bacterium Escherichia coli. We observed that MPO−/−mice unexpectedly had improved survival compared with wild-type (WT) mice within 5–12 h after intraperitoneal E. coli challenge. Lungs of MPO−/−mice also demonstrated lower bacterial colonization and markedly attenuated increases in microvascular permeability and edema formation after E. coli challenge compared with WT. However, PMN sequestration in lungs of both groups was similar. Basal inducible nitric oxide synthase (iNOS) expression was significantly elevated in lungs and PMNs of MPO−/−mice, and NO production was increased two- to sixfold compared with WT. Nitrotyrosine levels doubled in lungs of WT mice within 1 h after E. coli challenge but did not change in MPO−/−mice. Inhibition of iNOS in MPO−/−mice significantly increased lung edema and reduced their survival after E. coli challenge, but iNOS inhibitor had the opposite effect in WT mice. Thus augmented iNOS expression and NO production in MPO−/−mice compensate for the lack of HOCl-mediated bacterial killing, and the absence of MPO-derived oxidants mitigates E. coli sepsis-induced lung inflammation and injury.


Sign in / Sign up

Export Citation Format

Share Document