Effects of a Biological Control Introduction on Three Nontarget Native Species of Saturniid Moths

2000 ◽  
Vol 14 (6) ◽  
pp. 1798-1806 ◽  
Author(s):  
George H. Boettner ◽  
Joseph S. Elkinton ◽  
Cynthia J. Boettner
2000 ◽  
Vol 14 (6) ◽  
pp. 1798-1806 ◽  
Author(s):  
George H. Boettner ◽  
Joseph S. Elkinton ◽  
Cynthia J. Boettner

Author(s):  
Fazila Yousuf ◽  
Peter A. Follett ◽  
Conrad P. D. T. Gillett ◽  
David Honsberger ◽  
Lourdes Chamorro ◽  
...  

AbstractPhymastichus coffea LaSalle (Hymenoptera:Eulophidae) is an adult endoparasitoid of the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera:Curculionidae:Scolytinae), which has been introduced in many coffee producing countries as a biological control agent. To determine the effectiveness of P. coffea against H. hampei and environmental safety for release in Hawaii, we investigated the host selection and parasitism response of adult females to 43 different species of Coleoptera, including 23 Scolytinae (six Hypothenemus species and 17 others), and four additional Curculionidae. Non-target testing included Hawaiian endemic, exotic and beneficial coleopteran species. Using a no-choice laboratory bioassay, we demonstrated that P. coffea was only able to parasitize the target host H. hampei and four other adventive species of Hypothenemus: H. obscurus, H. seriatus, H. birmanus and H. crudiae. Hypothenemus hampei had the highest parasitism rate and shortest parasitoid development time of the five parasitized Hypothenemus spp. Parasitism and parasitoid emergence decreased with decreasing phylogenetic relatedness of the Hypothenemus spp. to H. hampei, and the most distantly related species, H. eruditus, was not parasitized. These results suggest that the risk of harmful non-target impacts is low because there are no native species of Hypothenemus in Hawaii, and P. coffea could be safely introduced for classical biological control of H. hampei in Hawaii.


2016 ◽  
Vol 148 (S1) ◽  
pp. S239-S269 ◽  
Author(s):  
Chris J.K. MacQuarrie ◽  
D.B. Lyons ◽  
M. Lukas Seehausen ◽  
Sandy M. Smith

AbstractBiological control has been an important tactic in the management of Canadian forests for over a century, but one that has had varied success. Here, we review the history of biological control programmes using vertebrate and invertebrate parasitoids and predators against insects in Canadian forests. Since roughly 1882, 41 insect species have been the target of biological control, with approximately equal numbers of both native and non-native species targeted. A total of 161 species of biological control agents have been released in Canadian forests, spanning most major orders of insects, as well as mites and mammals. Biological control has resulted in the successful suppression of nine pest species, and aided in the control of an additional six species. In this review, we outline the chronological history of major projects across Canadian forests, focussing on those that have had significant influence for the development of biological control. The historical data clearly illustrate a rise and fall in the use of biological control as a tactic for managing forest pests, from its dominance in the 1940s and 1950s to its current low level. The strategic implementation of these biological control programmes, their degree of success, and the challenges faced are discussed, along with the discipline’s shifting relationship to basic science and the environmental viewpoints surrounding its use.


2012 ◽  
Vol 5 (5) ◽  
pp. 444-454 ◽  
Author(s):  
Jetske G. de Boer ◽  
Bram Kuijper ◽  
George E. Heimpel ◽  
Leo W. Beukeboom

2007 ◽  
Vol 47 (4) ◽  
pp. 460 ◽  
Author(s):  
F. Beaulieu ◽  
A. R. Weeks

The taxonomy, biology and ecology of free-living mesostigmatic mites in Australia and their current and potential use in biological control and bioindication is reviewed. Most current research on free-living Mesostigmata in Australia focuses on species with an established role in the biocontrol of crop pests, such as members of the family Phytoseiidae. Three introduced species and at least seven native species of Phytoseiidae are presently used for the control of phytophagous mites in Australia. The introduced phytoseiids are mostly specific to spider mites and have been selected for resistance to some of the common pesticides. Native species provide the advantage of being generalist feeders and are capable of using alternative food in the absence of mite pests. Therefore they can persist more effectively in the environment and contribute to the control of several pests. The reduced and selective use of pesticides, accompanied by scouting services, has allowed the successful control of phytophagous mites by native species in several Australian tree crops, especially grapevine and citrus. In soils, Mesostigmata are extremely abundant, species-rich and play significant ecological roles. They feed on a broad range of invertebrates, including phytophagous pests that spend part or most of their lives on or in the soil or root systems. However, the majority of mesostigmatic mite species are unknown in Australia. Nevertheless, recent research indicates that many species are habitat-specific, and that they may be sensitive to agricultural practices and other land management systems. Mesostigmata have great potential for biological control of pests, and as indicators of soil quality and sustainable agricultural practices. However, the current paucity of research and information on the taxonomy, life-history and ecology of native species in natural and managed landscapes will continue to hinder their use in biological control and as bioindicators.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1579
Author(s):  
Amel Balla ◽  
Allaoua Silini ◽  
Hafsa Cherif-Silini ◽  
Ali Chenari Bouket ◽  
Warren Keith Moser ◽  
...  

Forests are an essential component of the natural environment, as they support biodiversity, sequester carbon, and play a crucial role in biogeochemical cycles—in addition to producing organic matter that is necessary for the function of terrestrial organisms. Forests today are subject to threats ranging from natural occurrences, such as lightning-ignited fires, storms, and some forms of pollution, to those caused by human beings, such as land-use conversion (deforestation or intensive agriculture). In recent years, threats from pests and pathogens, particularly non-native species, have intensified in forests. The damage, decline, and mortality caused by insects, fungi, pathogens, and combinations of pests can lead to sizable ecological, economic, and social losses. To combat forest pests and pathogens, biocontrol may be an effective alternative to chemical pesticides and fertilizers. This review of forest pests and potential adversaries in the natural world highlights microbial inoculants, as well as research efforts to further develop biological control agents against forest pests and pathogens. Recent studies have shown promising results for the application of microbial inoculants as preventive measures. Other studies suggest that these species have potential as fertilizers.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11530
Author(s):  
Maria do Socorro Miranda de Sousa ◽  
Ezequiel de Deus ◽  
Adilson Lopes Lima ◽  
Cristiane Ramos de Jesus ◽  
Salustiano Vilar da Costa Neto ◽  
...  

Fruit flies are economically important pests that infest a wide variety of host trees. The environmental damage caused by traditional pesticide-based control methods has prompted scientists to seek less damaging alternatives such as biological control by native species. Parasitoids, especially Braconidae species, have excellent potential as biological control agents for fruit flies, being both generalists and well distributed geographically. Native fruit trees that support medium or high levels of these parasitoids could therefore play an important role in biological control strategies. A good potential example is Spondias mombin L. in the Brazilian Amazon, which hosts several species of fruit flies and associated parasitoids. Here, we provide a unique synthesis of over nearly two decades of data from the east Amazon, clearly demonstrating the potential of S. mombin to act as a source and reservoir of fruit fly parasitoids. This important ecosystem service (biological control) provided by the parasitoids and supported by S. mombin could be further enhanced through conservation of this plant species in its natural environment.


Sign in / Sign up

Export Citation Format

Share Document