scholarly journals Spondias mombin as a reservoir of fruit fly parasitoid populations in the Eastern Amazon: an undervalued ecosystem service

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11530
Author(s):  
Maria do Socorro Miranda de Sousa ◽  
Ezequiel de Deus ◽  
Adilson Lopes Lima ◽  
Cristiane Ramos de Jesus ◽  
Salustiano Vilar da Costa Neto ◽  
...  

Fruit flies are economically important pests that infest a wide variety of host trees. The environmental damage caused by traditional pesticide-based control methods has prompted scientists to seek less damaging alternatives such as biological control by native species. Parasitoids, especially Braconidae species, have excellent potential as biological control agents for fruit flies, being both generalists and well distributed geographically. Native fruit trees that support medium or high levels of these parasitoids could therefore play an important role in biological control strategies. A good potential example is Spondias mombin L. in the Brazilian Amazon, which hosts several species of fruit flies and associated parasitoids. Here, we provide a unique synthesis of over nearly two decades of data from the east Amazon, clearly demonstrating the potential of S. mombin to act as a source and reservoir of fruit fly parasitoids. This important ecosystem service (biological control) provided by the parasitoids and supported by S. mombin could be further enhanced through conservation of this plant species in its natural environment.

2021 ◽  
Vol 10 (1) ◽  
pp. e22510111245
Author(s):  
Angélica da Silva Salustino ◽  
Wilma Freitas Celedônio ◽  
Manoel Cícero de Oliveira Filho ◽  
Demichaelmax Sales de Melo ◽  
Josué José da Silva ◽  
...  

The Tephritidae family has many fruit fly species responsible for causing direct and indirect damage to economically important fruit trees worldwide. Biological control has been sought as a method for the management of these insects, mainly because it does not cause adverse damage to the environment. Thus, this review sought information on what is currently being published in the scientific field about the main biological agents that are used to control fruit flies. The information was obtained through surveys between the months of June and August 2020, in bases such as the Web of Science, Scopus, ScienceDirect, Taylor & Francis, Springer, and Scielo. The inclusion of the articles followed criteria such as publication language English, Portuguese and Spanish, available in full, from categories A1 to B1, related to the biological agents used in the control of fruit flies and published in the last five years. A total of 2,362 studies were found, of which 105 articles were selected for this review. Regarding the years of publication, only 27% of the studies correspond to references from the years 2019 and 2020, with a greater number of research on parasitoids and developed in the laboratory. The largest concentration of research was in countries like Brazil, Mexico, and Spain.


2002 ◽  
Vol 92 (5) ◽  
pp. 423-429 ◽  
Author(s):  
X.G. Wang ◽  
R.H. Messing

AbstractCompetitive displacement of fruit fly parasitoids has been a serious issue in the history of fruit fly biological control in Hawaii. This concern regarding competitive risk of new parasitoids has led to an overall tightening of regulations against the use of classical biological control to manage fruit flies. Fopius arisanus (Sonan), an egg–larval parasitoid, is the most effective natural enemy of tephritid fruit flies in Hawaii. This study evaluated the competitive risk of two recently introduced larval parasitoids, Diachasmimorpha kraussii Fullaway and Psyttalia concolor (Szépligeti), to F. arisanus attacking the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Fopius arisanus won almost all intrinsic competitions against both larval parasitoids through physiological suppression of egg development. 83.3% of D. kraussii eggs and 80.2% of P. concolor eggs were killed within three days in the presence of F. arisanus larvae within the bodies of multi-parasitized hosts. The mechanism that F. arisanus employs to eliminate both larval parasitoids is similar to that it uses against three other early established larval fruit fly parasitoids: F. vandenboschi (Fullaway), D. longicaudata (Ashmead) and D. tryoni (Cameron). It suggests that introduction of these larval parasitoids poses minimal competitive risk to F. arisanus in Hawaii.


Author(s):  
Maria do Socorro Miranda De Sousa ◽  
Jhulie Emille Veloso Dos Santos ◽  
Dori Edson Nava ◽  
Roberto Antonio Zucchi ◽  
Ricardo Adaime

 Fruit-bearing plants in the Brazilian Amazon are mainly attacked by species of Anastrepha, of which about half are endemic to the region. However, tritrophic relations (fly/plant/parasitoid) have only been established for some 25% of the species of Anastrepha in the region. At present, 11 species of hymenopterous parasitoids (Braconidae and Figitidae) have been recorded in the Brazilian Amazon. Parasitoids in general, especially those of the family Braconidae, stand out as the most effective natural enemies of fruit flies of the genus Anastrepha. Doryctobracon areolatus is the most abundant parasitoid and it is associated with the largest number of Anastrepha species in the region. Some fruiting species, for example Bellucia grossularioides (L.) Triana and Geissospermum argenteum Woodson, have been studied aiming at biological control of fruit flies, because they act as reservoirs or multipliers of fruit fly parasitoids. Although research has advanced significantly in the past 20 years, there is a shortage of studies in nearly all states in the region, due to the huge area of the Brazilian Amazon.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 662
Author(s):  
Flávio R. M. Garcia ◽  
Sérgio M. Ovruski ◽  
Lorena Suárez ◽  
Jorge Cancino ◽  
Oscar E. Liburd

Biological control has been the most commonly researched control tactic within fruit fly management programs. For the first time, a review is carried out covering parasitoids and predators of fruit flies (Tephritidae) from the Americas and Hawaii, presenting the main biological control programs in this region. In this work, 31 species of fruit flies of economic importance are considered in the genera Anastrepha (11), Rhagoletis (14), Bactrocera (4), Ceratitis (1), and Zeugodacus (1). In this study, a total of 79 parasitoid species of fruit flies of economic importance are listed and, from these, 50 are native and 29 are introduced. A total of 56 species of fruit fly predators occur in the Americas and Hawaii.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jorge Cancino ◽  
Rubén Leal-Mubarqui ◽  
Roberto Angulo ◽  
Cesar Pérez ◽  
Lucy Tirado

Abstract Different densities prerelease packing and times of lethargy in the fruit fly parasitoids Diachasmimorpha longicaudata (Ashmead) were evaluated in order to standardize the process of chilled insect technique for this species. Adults were kept at densities of 0.048, 0.072, 0.096, 0.120, and 0.144 parasitoids/cm2 before release in a México tower, where thermal lethargy was induced at a temperature of 2 ± 2°C for 45 min. Samples of parasitoids were collected to evaluate mortality, survival, fecundity, and flight capacity. All densities showed a similar mortality, both for males (ca. >10%) and females (ca. <7). There was no effect of density on survival and flight capacity in both sexes. On the other hand, fecundity increased with density, 1.66 sons/♀/day, similar to the control. We conclude that a density of 30,000 pupae per cage (0.144 parasitoids/cm2) is adequate for the massive prerelease packaging of the parasitoid D. longicaudata. Regarding the thermal lethargy period, 180 min under 2 ± 2°C conditions, considered as time for management, does not affect the survival, fecundity, and flight capacity of adults. The results obtained are of great utility to establish prerelease packaging parameters for D. longicaudata used in the biological control of Tephritidae fruit fly populations.


2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Luciano Brasil Martins de Almeida ◽  
João Batista Coelho ◽  
Jorge Anderson Guimarães ◽  
Manoel Araecio Uchoa

Abstract: Fruit flies are among the main groups of phytophagous insects. Their larvae, when feeding on the pulp or seeds of the host fruits, can cause rot and favor the entrance of pathogens. Thus, the objectives of this study was: (1) To know the trophic associations between species of parasitoids and fruit flies in the Parque Nacional da Serra da Bodoquena (PNSB)-MS, Brazil. (2) To inventory the parasitoid species associated with fruit flies in fruit trees in the Parque Nacional da Serra da Bodoquena. Monthly expeditions were carried out (From Jan 2017 to Feb 2018) in order to collect the fruits and obtain the fruit flies (Tephritidae) and their respective parasitoids. The collected fruits were transported to the laboratory of frugivorous insects (LIF) of the Universidade Federal da Grande Dourados (UFGD)-MS. The fruit fly larvae were daily collected and placed in transparent acrylic cups containing sterilized sand, where they remained till the emergence of adults and their parasitoids. Twenty-Three adult Tephritid parasitoids were recovered, represented by two species of Braconidae: Doryctobracon areolatus (18) and Utetes anastrephae (5), both infesting Anastrepha species: Anastrepha fraterculus, A. sororcula and A. striata in Myrtaceae: Psidium guajava and Eugenia myrcianthes. Doryctobracon areolatus and Utetes anastrephae are reported for the first time parasiting Anastrepha species in Eugenia myrcianthes.


1997 ◽  
Vol 87 (4) ◽  
pp. 405-412 ◽  
Author(s):  
M. Niklaus-Ruiz Borge ◽  
T. Basedow

AbstractMcPhail traps baited with hydrolysed protein and borax to trap mainly female fruit flies, Jackson traps baited with trimedlure to attract male Ceratitis capitata Wiedemann, and Jackson traps baited with cuelure and methyl eugenol to trap Bactrocera spp., were hung in fruit trees at 50 sites and serviced weekly from June, 1994 to March, 1995, over an area of 350 km2 in Nicaragua. Samples of fruit were collected and kept separately to rear adult fruit flies and their hymenopterous parasitoids from known host plants. No Bactrocera spp. was trapped or reared from fruit at any site. Ceratitis capitata was caught in high numbers in McPhail and Jackson traps at nearly all sites in the dry season, attacking coffee berries and fruit of Citrus species. Toxotrypana curvicauda Gerstaecker was attracted to the food lure McPhail traps in low numbers and was widespread throughout the year, attacking papaya (Caricaceae). Of 29 Anastrepha species known to occur south of Mexico and north of Panama, ten were found during the study, occurring mainly in the rainy season; only two of them were trapped frequently and reared from collected fruit. Anastrepha obliqua Macquart proved to be the second most abundant fruit fly species, with a population peak from June to October when its preferred host plants Mangifera indica, Spondias mombin (Anacardiaceae) and Psidium friedrichsthalianum (Myrtaceae) were ripening. Anastrepha striata Schiner, trapped at 45 sites, occurred from June to November, attacking P. friedrichsthalianum and P. guajava. Sampled fruit of a further eight species in seven families were not attacked by tephritid flies. Parasitism by introduced braconid Diachasmimorpha longicaudata (Ashmead) was very low (3.7% in C. capitata, 2.7% in A. obliqua and 5.3% in A. striata).


2009 ◽  
Vol 100 (2) ◽  
pp. 145-152 ◽  
Author(s):  
C. Monzó ◽  
B. Sabater-Muñoz ◽  
A. Urbaneja ◽  
P. Castañera

AbstractThe Mediterranean fruit fly, Ceratitis capitata (Wiedemann), which is often controlled chemically, is a major citrus pest in Spain; however, alternative biological control strategies such as those based on the conservation of polyphagous predators should be developed. The wolf spider, Pardosa cribata Simon, is an abundant predator found in citrus orchards in eastern Spain. In this study, we have evaluated polymerase chain reaction (PCR)-based techniques as a means of detecting C. capitata DNA remains in P. cribata specimens. To do so, two pairs of C. capitata species-specific primers were designed and tested. Primer specificity was tested on species closely related to C. capitata and with other pests and natural enemies present in citrus orchards. Medfly DNA was detectable in 100% of P. cribata from 0 to 12 h post ingestion for both primer pairs, decreasing to 37% at 96 h after prey ingestion for one pair of primers. DNA detectability half-lives were of 78.25 h and 78.08 h for each pair of primers but no statistical differences were found between them. Pardosa cribata specimens were field-collected daily after sterile C. capitata pupae had been deployed in the citrus orchard. Afterwards, the wolf spiders were analyzed and DNA remains of C. capitata were detected in 5% of them, with a peak of 15% coinciding with maximum C. capitata emergence. This study is the first to reveal the potential use of DNA markers to track medfly predation by P. cribata in citrus orchards and provides a new tool to estimate the potential role of this spider in biological-control conservation programs.


2018 ◽  
Vol 44 (1) ◽  
pp. 110
Author(s):  
Joatan Machado da Rosa ◽  
Marcelo Zanelato Nunes ◽  
Mari Inês Carissimi Boff ◽  
Flávio Roberto Mello Garcia ◽  
Pedro Boff ◽  
...  

Fruit flies cause economically important damage on several cultivated and native South American fruit trees. Hence, it is important to understand the population dynamics of these insects. This study aimed to characterize the assemblage and population fluctuations of fruit flies in a feijoa (Acca sellowiana) orchard in Lages, Santa Catarina State, Brazil from September 2009 to May 2012. Captures of flies were made with McPhail traps baited with hydrolyzed protein. Evaluations and bait change were performed weekly. A total of 2,197 flies were captured (957 males and 1,240 females). Analysis of abundance, constancy, dominancy and frequency showed that Anastrepha fraterculus was the main species captured; it was considered to be very frequent, constant and highly dominant throughout the study period. The orchard presented low equitability, low diversity, and high dominance of A. fraterculus during the three fruit seasons evaluated. No correlation was found between climatic factors and population levels of A. fraterculus.


Sign in / Sign up

Export Citation Format

Share Document