Binding of fluid phase C3b to nonsensitized bystander human red cells. A model for in vivo effects of complement activation on blood cells

Transfusion ◽  
1985 ◽  
Vol 25 (6) ◽  
pp. 528-534 ◽  
Author(s):  
A Salama ◽  
C Mueller-Eckhardt
Blood ◽  
1988 ◽  
Vol 71 (1) ◽  
pp. 36-40 ◽  
Author(s):  
KA Shastri ◽  
MJ Phillips ◽  
S Raza ◽  
GL Logue ◽  
PK Rustagi

Abstract Complement activation on red cells by heparin-protamine complexes was studied by using whole human serum. C3 bound to red cells was measured by radiolabeled monoclonal antibody to C3, and fluid-phase C5a was determined by radioimmunoassay. Heparin and protamine in clinically relevant concentrations caused the binding of C3 to red cell membranes, and the measurement of C3 binding provided a sensitive indicator of complement activation produced by these complexes. Complement activation by these reagents occurred at concentration ratios of protamine and heparin at which protamine neutralized the anticoagulant effect of heparin. Heparin-protamine complexes appeared to bind to red cells and produce complement activation by the classic pathway. C5a generation with heparin-protamine complexes in serum was greatly enhanced in the presence of red cells and increased with increasing red cell concentration. This enhancement of complement activation in the presence of red cells was also seen as measured by depletion of available C3 hemolytic complement units in the fluid phase. Thus red cells seem to play an important role in activation of complement by heparin-protamine complexes.


Blood ◽  
1952 ◽  
Vol 7 (7) ◽  
pp. 721-728 ◽  
Author(s):  
WILLIAM P. CREGER ◽  
HOUGHTON GIFFORD

Abstract 1. Saline suspensions of human red cells, as well as those of several animal species, were agglutinated by normal saline extracts of the Fava bean. 2. This agglutination was potentiated in titer 100-fold in a medium of 10 per cent acacia, as a diluent. 3. The inhibition of the hemagglutination action of the Fava bean extract by human serum was apparently attributable to the gamma globulin fraction. 4. The Fava bean principle could be transferred from cell to cell, as shown by heat-elution and acacia technics. 5. Fava-sensitized red cells did not exhibit increased susceptibility in the test tube to complement, hemolysin, or osmotic or mechanical fragility. 6. The mechanism of in vivo red cell destruction in Favism is as yet unknown, but a special immunologic susceptibility to the action of the bean’s principle is suspected in certain persons. 7. It is suggested that the relation of acacia to Fava-sensitized red cells may form the basis of a diagnostic test for Favism in the early, acute stages of the disease.


1985 ◽  
Vol 24 (1) ◽  
pp. 59-63 ◽  
Author(s):  
sujii Nahoki T ◽  
Kunimoto Manabu ◽  
Shimojo Nobuhiro ◽  
Miura Takashi

2021 ◽  
Vol 12 ◽  
Author(s):  
Perumal Thiagarajan ◽  
Charles J. Parker ◽  
Josef T. Prchal

Normal human red blood cells have an average life span of about 120 days in the circulation after which they are engulfed by macrophages. This is an extremely efficient process as macrophages phagocytose about 5 million erythrocytes every second without any significant release of hemoglobin in the circulation. Despite large number of investigations, the precise molecular mechanism by which macrophages recognize senescent red blood cells for clearance remains elusive. Red cells undergo several physicochemical changes as they age in the circulation. Several of these changes have been proposed as a recognition tag for macrophages. Most prevalent hypotheses for red cell clearance mechanism(s) are expression of neoantigens on red cell surface, exposure phosphatidylserine and decreased deformability. While there is some correlation between these changes with aging their causal role for red cell clearance has not been established. Despite plethora of investigations, we still have incomplete understanding of the molecular details of red cell clearance. In this review, we have reviewed the recent data on clearance of senescent red cells. We anticipate recent progresses in in vivo red cell labeling and the explosion of modern proteomic techniques will, in near future, facilitate our understanding of red cell senescence and their destruction.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2431-2431 ◽  
Author(s):  
Xuan Yuan ◽  
Guangwei Yang ◽  
Jane A Thanassi ◽  
Manuel D Galvan ◽  
Steven D Podos ◽  
...  

Abstract Introduction: The complement system can be activated via three pathways: classical pathway (CP), lectin pathway (LP) and alternative pathway (AP). While the CP and LP are triggered in the solid phase upon interaction of a pattern-recognition molecule with a target surface, the AP can be activated in the fluid phase. In fact, under normal physiological conditions, the AP is constitutively activated at a low level in the fluid phase via a mechanism of "C3 tickover" which leads to production of the C3b that can bind covalently to adjacent target cells or its binding activity is lost very rapidly. On the normal red cells, the bound C3b molecules are rapidly inactivated by an array of membrane-expressed or fluid phase-recruited complement regulators. However, due to the deficiency of two membrane-expressed negative regulators CD55 and CD59, the bound C3b molecules on the PNH red cells are not only amplified via the AP loop but also proceed to form the C3 convertase, the C5 convertase and ultimately the membrane attack complex, which causes hemolysis of PNH red cells. Hence, the blockade of both AP activation in the fluid phase and AP amplification on the surface of PNH red cells with a complement factor D (CFD) inhibitor is expected to be efficacious for PNH indication since hemolysis is due to the constitutive fluid phase AP activation. In this report, we evaluated whether hemolysis of PNH red cells occurs under the conditions in which the CP, LP and/or AP are activated by various pathogens in vitro. Our objective was to determine whether there is "bystander" hemolysis due to massive pathogen-driven complement activation and the potential for resulting C3b to bind PNH red cells and lead to complement-mediated hemolysis through AP amplification. Methods: Blood was obtained from PNH patients with written informed consent. Pathogen inoculums, such as E. coli and Neisseria meningitidis(NM), were prepared by standard methods. Hemolysis of PNH red cells was assessed with ~80% ABO blood type-matched pooled normal human serum (NHS) in GVB0-Mg-EGTA buffer (pH6.4) as well as in GVB++ buffer (pH7.3) in the presence and absence of a small molecule CFD inhibitor (ACH-4471). The extent of bystander hemolysis of PNH red cells was assessed with ~80% ABO blood type-matched pooled NHS in GVB++ buffer (pH7.3) for all pathogens for all pathogens except the NM isolates, where individual sera with bactericidal activity were used. Parallel evidence of complement activation by the pathogens was evaluated by 1) bactericidal activity of E. coli with pooled NHS-depleted of C1q, C2, CFD or C5 in GVB++ buffer (pH7.3), 2) bactericidal activity of NM isolates with the sera in GVB++ buffer (pH7.3) in the presence of ACH-4471, a CFD inhibitor; 3) measurement of the complement components and their activation products. Results: The extent of hemolysis of red cells harvested from PNH subjects was approximately equal to the Type II/III clone size when assessed with NHS in GVB0-Mg-EGTA buffer (pH6.4) ranging from ~30% to 90%; hemolysis was effectively blocked by ACH-4471, consistent with the data shown previously(Gavriilaki et. al. ASH 2015, Abstract No 275). No significant hemolysis of red cells harvested from PNH subjects was seen when assessed with NHS in GVB++ buffer (pH7.3) and furthermore hemolysis was not increased upon addition of bacteria (Fig. A). For E. coli, the bactericidal activity was unaffected by disruption of the CP (C1q depletion), the AP (CFD depletion), the CP and LP (C2 depletion) although, as expected, bactericidal activity was abrogated by disruption of the terminal pathway (C5 depletion) (Fig. B), confirming that complement activation was initiated via multiple pathways by E. coli. For NM isolates, the bactericidal activity was unaffected by disruption of the AP (Fig. B), confirming that the complement activation is initiated via CP or LP by NM isolates. Complement activation for other pathogens will be presented. Conclusion: We demonstrated that PNH red cells were not subjected to theoretical "bystander hemolysis" when incubated with the bacteria tested herein, suggesting no increased risk of pathogen-induced hemolytic breakthrough in PNH patients if treated with a complement alternative pathway inhibitor. Figure Figure. Disclosures Yang: Achillion: Employment, Equity Ownership. Thanassi:Achillion: Employment, Equity Ownership. Galvan:Achillion: Employment, Equity Ownership. Podos:Achillion: Employment, Equity Ownership. Huang:Achillion: Employment, Equity Ownership. Brodsky:Achillion Pharmaceuticals: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Apellis Pharmaceuticals Inc: Membership on an entity's Board of Directors or advisory committees; Alexion Pharmaceuticals Inc: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


2006 ◽  
Vol 13 (5) ◽  
pp. 1016-1026 ◽  
Author(s):  
Shanbao Cai ◽  
Jennifer R. Hartwell ◽  
Ryan J. Cooper ◽  
Beth E. Juliar ◽  
Emi Kreklau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document