The fruit fly parasitoid Fopius arisanus: reproductive attributes of pre-released females and the use of added sugar as a potential food supplement in the field

2001 ◽  
Vol 101 (3) ◽  
pp. 247-255 ◽  
Author(s):  
Renato C. Bautista ◽  
Ernest J. Harris ◽  
Roger I. Vargas
1999 ◽  
Vol 15 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Renato C Bautista ◽  
Noboru Mochizuki ◽  
John P Spencer ◽  
Ernest J Harris ◽  
Dwayne M Ichimura

2019 ◽  
Vol 109 (05) ◽  
pp. 649-658
Author(s):  
A. Monsia ◽  
G.S.B. Mègnigbèto ◽  
D. Gnanvossou ◽  
M.F. Karlsson

AbstractParasitoids, released in augmentative biological control programmes, which display a rapid host-location capacity, have a higher likelihood of successfully controlling target pest species. By learning to associate sensory cues to a suitable oviposition site, might parasitoids used as biological control agents, locate hosts more rapidly, and perhaps increase the efficacity of e.g. Tephritidae fruit fly management. We studied associative learning of Fopius arisanus (Hymenoptera: Braconidae) and tested its range of learning in natural and conditional hosts and host fruits, i.e. Bactrocera dorsalis, Zeugodacus cucurbitae, Ceratitis capitata and Ceratitis cosyra (Diptera: Tephritidae) and on fruits (papaya, tomato, banana). Naïve female F. arisanus were compared with experienced wasps, which had been offered infested and non-infested fruit, and been allowed to oviposit. Preferences for olfactory cues from infested fruits were thereafter assessed in a two-choice olfactometer. Naïve and trained parasitoids preference differed in general and non-responders to infested fruits were higher among naïve parasitoids. The trained wasps preferred the fruit infested in the training more than the control fruit, for all combination, except when C. cosyra infested the fruits, hence avoidance behavioural response was observed towards the odour of the infested fruit. Fopius arisanus was capable of behaviourally respond to the learned information, e.g. associative odour learning was achieved, yet limited depending on interaction level, fruit fly and fruit combination. To create F. arisanus preference of an associated odour, it might hence be needed to ensure oviposition in perceived suitable host and host fruit, for the parasitoid learning to become favourable in a biological control setup.


LWT ◽  
2002 ◽  
Vol 35 (5) ◽  
pp. 458-465 ◽  
Author(s):  
F. Gorreta ◽  
R. Bernasconi ◽  
G. Galliani ◽  
M. Salmona ◽  
M.T. Tacconi ◽  
...  

Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 64 ◽  
Author(s):  
Aleksandar Kostić ◽  
Danijel Milinčić ◽  
Tanja Petrović ◽  
Vesna Krnjaja ◽  
Sladjana Stanojević ◽  
...  

Due to its divergent chemical composition and good nutritional properties, pollen is not only important as a potential food supplement but also as a good substrate for the development of different microorganisms. Among such microorganisms, toxigenic fungi are extremely dangerous as they can synthesize mycotoxins as a part of their metabolic pathways. Furthermore, favorable conditions that enable the synthesis of mycotoxins (adequate temperature, relative humidity, pH, and aw values) are found frequently during pollen collection and/or production process. Internationally, several different mycotoxins have been identified in pollen samples, with a noted predominance of aflatoxins, ochratoxins, fumonisins, zearalenone, deoxynivalenol, and T-2 toxin. Mycotoxins are, generally speaking, extremely harmful for humans and other mammals. Current EU legislation contains guidelines on the permissible content of this group of compounds, but without information pertaining to the content of mycotoxins in pollen. Currently only aflatoxins have been researched and discussed in the literature in regard to proposed limits. Therefore, the aim of this review is to give information about the presence of different mycotoxins in pollen samples collected all around the world, to propose possible aflatoxin contamination pathways, and to emphasize the importance of a regular mycotoxicological analysis of pollen. Furthermore, a suggestion is made regarding the legal regulation of pollen as a food supplement and the proposed tolerable limits for other mycotoxins.


BioControl ◽  
2008 ◽  
Vol 54 (3) ◽  
pp. 437-444 ◽  
Author(s):  
Pablo Montoya ◽  
Alfonso Suárez ◽  
Florida López ◽  
Jorge Cancino

2002 ◽  
Vol 92 (5) ◽  
pp. 423-429 ◽  
Author(s):  
X.G. Wang ◽  
R.H. Messing

AbstractCompetitive displacement of fruit fly parasitoids has been a serious issue in the history of fruit fly biological control in Hawaii. This concern regarding competitive risk of new parasitoids has led to an overall tightening of regulations against the use of classical biological control to manage fruit flies. Fopius arisanus (Sonan), an egg–larval parasitoid, is the most effective natural enemy of tephritid fruit flies in Hawaii. This study evaluated the competitive risk of two recently introduced larval parasitoids, Diachasmimorpha kraussii Fullaway and Psyttalia concolor (Szépligeti), to F. arisanus attacking the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Fopius arisanus won almost all intrinsic competitions against both larval parasitoids through physiological suppression of egg development. 83.3% of D. kraussii eggs and 80.2% of P. concolor eggs were killed within three days in the presence of F. arisanus larvae within the bodies of multi-parasitized hosts. The mechanism that F. arisanus employs to eliminate both larval parasitoids is similar to that it uses against three other early established larval fruit fly parasitoids: F. vandenboschi (Fullaway), D. longicaudata (Ashmead) and D. tryoni (Cameron). It suggests that introduction of these larval parasitoids poses minimal competitive risk to F. arisanus in Hawaii.


LWT ◽  
2021 ◽  
Vol 140 ◽  
pp. 110819
Author(s):  
Ting Hu ◽  
Huafen Li ◽  
Guishen Zhao ◽  
Yanbin Guo

Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 37
Author(s):  
Shiwei Hu ◽  
Sichun Chen ◽  
Hongli Zhu ◽  
Mengyu Du ◽  
Wei Jiang ◽  
...  

Fucoidans from sea cucumber (SC-FUC) have been proven to alleviate insulin resistance in several species. However, there are few studies that clarify the relationship between their structure and bioactivity. The present study evaluated the influence of molecular weight (Mw), sulfation concentrations (Cs), and sulfation position on improving insulin resistance using SC-FUC. Results showed that fucoidans with lower Mw exerted stronger effects. Having a similar Mw, Acaudina molpadioides fucoidans (Am-FUC) with lower Cs and Holothuria tubulosa fucoidans with higher Cs showed similar activities. However, Isostichopus badionotus fucoidans (higher Cs) activity was superior to that of low-Mw Thelenota ananas fucoidans (Ta-LFUC, lower Cs). Eliminating the effects of Mw and Cs, the bioactivity of Am-FUC with sulfation at meta-fucose exceeded that of Ta-FUC with sulfation at ortho-position. Moreover, the effects of Pearsonothuria graeffei fucoidans with 4-O-sulfation were superior to those of Am-LFUC with 2-O-sulfation. These data indicate that low Mw, 4-O-sulfation, and sulfation at meta-fucose contributed considerably to insulin resistance alleviation by SC-FUC, which could accelerate the development of SC-FUC as a potential food supplement to alleviate insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document