Low power electrocardiography and impedance cardiography detection system based on labview and bluetooth low energy

Author(s):  
Xianxiang Chen ◽  
Jiabai Xie ◽  
Zhen Fang ◽  
Shanhong Xia
Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2420 ◽  
Author(s):  
Sung Jin Kim ◽  
Dong Gyu Kim ◽  
Seong Jin Oh ◽  
Dong Soo Lee ◽  
Young Gun Pu ◽  
...  

This paper presents a low power Gaussian Frequency-Shift Keying (GFSK) transceiver (TRX) with high efficiency power management unit and integrated Single-Pole Double-Throw switch for Bluetooth low energy application. Receiver (RX) is implemented with the RF front-end with an inductor-less low-noise transconductance amplifier and 25% duty-cycle current-driven passive mixers, and low-IF baseband analog with a complex Band Pass Filter(BPF). A transmitter (TX) employs an analog phase-locked loop (PLL) with one-point GFSK modulation and class-D digital Power Amplifier (PA) to reduce current consumption. In the analog PLL, low power Voltage Controlled Oscillator (VCO) is designed and the automatic bandwidth calibration is proposed to optimize bandwidth, settling time, and phase noise by adjusting the charge pump current, VCO gain, and resistor and capacitor values of the loop filter. The Analog Digital Converter (ADC) adopts straightforward architecture to reduce current consumption. The DC-DC buck converter operates by automatically selecting an optimum mode among triple modes, Pulse Width Modulation (PWM), Pulse Frequency Modulation (PFM), and retention, depending on load current. The TRX is implemented using 1P6M 55-nm Complementary Metal–Oxide–Semiconductor (CMOS) technology and the die area is 1.79 mm2. TRX consumes 5 mW on RX and 6 mW on the TX when PA is 0-dBm. Measured sensitivity of RX is −95 dBm at 2.44 GHz. Efficiency of the DC-DC buck converter is over 89% when the load current is higher than 2.5 mA in the PWM mode. Quiescent current consumption is 400 nA from a supply voltage of 3 V in the retention mode.


Sensors ◽  
2012 ◽  
Vol 12 (9) ◽  
pp. 11734-11753 ◽  
Author(s):  
Carles Gomez ◽  
Joaquim Oller ◽  
Josep Paradells

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 608
Author(s):  
Jaehyo Jung ◽  
Siho Shin ◽  
Mingu Kang ◽  
Kyeung Ho Kang ◽  
Youn Tae Kim

Wearable monitoring devices can provide patients and doctors with the capability to measure bio-signals on demand. These systems provide enormous benefits for people with acute symptoms of serious health conditions. In this paper, we propose a novel method for collecting ECG signals using two wireless wearable modules. The electric potential measured from a sub-module is transferred to the main module through Bluetooth Low Energy, and the collected values are simultaneously displayed in the form of a graph. This study describes the configuration and outcomes of the proposed system and discusses the important challenges associated with the functioning of the device. The proposed system had 84% signal similarity to that of other commercial products. As a band-type module was used on each wrist to check the signal, continuous observation of patients can be achieved without restricting their actions or causing discomfort.


Sign in / Sign up

Export Citation Format

Share Document