Application of compressed sensing in remote fault diagnosis of hydraulic pump

Author(s):  
Wanlu Jiang ◽  
Yafei Lei ◽  
Zhiyong Ren ◽  
Zhengbao Li ◽  
Sheng Zhang
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2599
Author(s):  
Zhenbao Li ◽  
Wanlu Jiang ◽  
Sheng Zhang ◽  
Yu Sun ◽  
Shuqing Zhang

To address the problem that the faults in axial piston pumps are complex and difficult to effectively diagnose, an integrated hydraulic pump fault diagnosis method based on the modified ensemble empirical mode decomposition (MEEMD), autoregressive (AR) spectrum energy, and wavelet kernel extreme learning machine (WKELM) methods is presented in this paper. First, the non-linear and non-stationary hydraulic pump vibration signals are decomposed into several intrinsic mode function (IMF) components by the MEEMD method. Next, AR spectrum analysis is performed for each IMF component, in order to extract the AR spectrum energy of each component as fault characteristics. Then, a hydraulic pump fault diagnosis model based on WKELM is built, in order to extract the features and diagnose faults of hydraulic pump vibration signals, for which the recognition accuracy reached 100%. Finally, the fault diagnosis effect of the hydraulic pump fault diagnosis method proposed in this paper is compared with BP neural network, support vector machine (SVM), and extreme learning machine (ELM) methods. The hydraulic pump fault diagnosis method presented in this paper can diagnose faults of single slipper wear, single slipper loosing and center spring wear type with 100% accuracy, and the fault diagnosis time is only 0.002 s. The results demonstrate that the integrated hydraulic pump fault diagnosis method based on MEEMD, AR spectrum, and WKELM methods has higher fault recognition accuracy and faster speed than existing alternatives.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Xiaolin Liu ◽  
Xiaoqiang Yang ◽  
Faming Shao ◽  
Wuqiang Liu ◽  
Fuming Zhou ◽  
...  

2009 ◽  
Vol 76-78 ◽  
pp. 67-71
Author(s):  
Wan Shan Wang ◽  
Tian Biao Yu

A remote fault diagnosis method for ultrahigh speeding grinding based on multi-agent is presented. The general faults of ultrahigh speed grinding are analyzed and diagnosis model based on multi-agent is established, the dialogue layer, problem decomposition layer, control layer and problem solving layer in the process of diagnosis are studied and the knowledge reasoning model of fault diagnosis is set up based case-based reasoning (CBR) combining rule-based reasoning (RBR). Based on theoretical research, a remote fault diagnosis system of ultrahigh speed grinding is developed. Results of the system running prove the theory is correctness and the technology is feasibility.


2014 ◽  
Vol 945-949 ◽  
pp. 1707-1712
Author(s):  
Bin Shen ◽  
Shu Yu Zhao ◽  
Jia Hai Wang ◽  
Juergen Fleischer

Based on the authors previous work of developing an expert system for fault diagnosis of CNC machine tool, this paper studied the theory and method of CNC remote fault diagnosis expert system based on B/S, and presents schema and structure of the expert system in detailed. Case based reasoning is used for the multi-alarm diagnosis, and rule based reasoning is used for single-alarm diagnosis. At last fault diagnosis expert system was designed and developed making use of C# and ASP.NET.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1176-1179
Author(s):  
Hai Dong ◽  
Heng Bao Xin

In this paper, an approach of fuzzy Petri nets (FPN) is proposed to simulate the fault spreading and diagnosis of hydraulic pump. First, the fuzzy production rules and the definition of FPN were briefly introduced. Then, its knowledge reasoning process and the matrix operations based on an algorithm were conducted, which makes full use of its parallel reasoning ability and makes it simpler and easier to implement. Finally, a case of hydraulic pump fault diagnosis with FPN was presented in detail, for illustrating the interest of the proposed modeling and analysis algorithm.


2020 ◽  
Vol 1486 ◽  
pp. 072007
Author(s):  
Tianhao Zhang ◽  
Guofang Wu ◽  
Chaozhou Chen ◽  
Xiaojuan Yang

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4460 ◽  
Author(s):  
Yunzhao Jia ◽  
Minqiang Xu ◽  
Rixin Wang

Hydraulic pump is a driving device of the hydraulic system, always working under harsh operating conditions, its fault diagnosis work is necessary for the smooth running of a hydraulic system. However, it is difficult to collect sufficient status information in practical operating processes. In order to achieve fault diagnosis with poor information, a novel fault diagnosis method that is the based on Symbolic Perceptually Important Point (SPIP) and Hidden Markov Model (HMM) is proposed. Perceptually important point technology is firstly imported into rotating machine fault diagnosis; it is applied to compress the original time-series into PIP series, which can depict the overall movement shape of original time series. The PIP series is transformed into symbolic series that will serve as feature series for HMM, Genetic Algorithm is used to optimize the symbolic space partition scheme. The Hidden Markov Model is then employed for fault classification. An experiment involves four operating conditions is applied to validate the proposed method. The results show that the fault classification accuracy of the proposed method reaches 99.625% when each testing sample only containing 250 points and the signal duration is 0.025 s. The proposed method could achieve good performance under poor information conditions.


Sign in / Sign up

Export Citation Format

Share Document