Comparison of Near-Field Transforming Metasurfaces and Inhomogenous and Anisotropic Lenses for Low-Profile Transmitarray Illumination

Author(s):  
E.B. Whiting ◽  
S.D. Campbell ◽  
D. Binion ◽  
J. Nagar ◽  
P.L. Werner ◽  
...  
Author(s):  
Kazuki Yamada ◽  
Yuto Samura ◽  
Oleg V. Minin ◽  
Atsushi Kanno ◽  
Norihiko Sekine ◽  
...  

A short-range terahertz (THz) wireless transmission in the 300 GHz band is demonstrated using low-profile wavelength-scaled dielectric transmitting and receiving cuboid antennas (DCAs). These dielectric cuboid antennas are made of polytetrafluoroethylene with dimensions of approximately 1.2 mm × 1.2 mm × 1.3 mm. The near-field pattern of a DCA at 300 GHz was measured using an electro-optic sensing technique, and its far-field pattern characterization was based on the near-field to far-field transformation. The measured antenna gain was 15.06 ± 0.06 dBi. By employing DCAs as transmitting and receiving antennas, a 17.5 Gbps data transmission rate at distances of approximately 200 and 50 mm with bit error rates of 3.31 × 10–3 and 7.51 × 10–7 respectively, is demonstrated. The proposed mesoscopic scale DCA is a promising antenna type in intra-device communications and Kiosk download applications for future mobile devices operating in the 300 GHz band.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 995 ◽  
Author(s):  
Won Choi ◽  
Young Kim ◽  
Hyeong Jo ◽  
Joo Pyun ◽  
Soo Kwon ◽  
...  

Intensive research on photoacoustics (PA) for imaging of the living human body, including the skin, vessels, and tumors, has recently been conducted. We propose a PA measurement system based on a capacitive micromachined ultrasonic transducer (CMUT) with waterless coupling, short measurement time (<1 s), backward light irradiation, and a low-profile ultrasonic receiver unit (<1 cm). We fabricate a 64-element CMUT ring array with 6.2 mm diameter and 10.4 MHz center frequency in air, and 100% yield and uniform element response. To validate the PA tissue characterization, we employ pencil lead and red ink as solid and liquid models, respectively, and a living body to target moles and vessels. The system implements a near-field imaging system consisting of a 6 mm polydimethylsiloxane (PDMS) matching layer between the object and CMUT, which has a 3.7 MHz center frequency in PDMS. Experiments were performed in a waterless contact on the PDMS and the laser was irradiated with a 1 cm diameter. The experimental results show the feasibility of this near-field PA imaging system for position and depth detection of skin, mole, vessel cells, etc. Therefore, a system applicable to a low-profile compact biomedical device is presented.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1998 ◽  
Author(s):  
Wei Lin ◽  
Richard W. Ziolkowski

Wirelessly powered, very compact sensors are highly attractive for many emerging Internet-of-things (IoT) applications; they eliminate the need for on-board short-life and bulky batteries. In this study, two electrically small rectenna-based wirelessly powered light and temperature sensors were developed that operate at 915 MHz in the 902–928-MHz industrial, scientific, and medical (ISM) bands. First, a metamaterial-inspired near-field resonant parasitic (NFRP) Egyptian axe dipole (EAD) antenna was seamlessly integrated with a highly efficient sensor-augmented rectifier without any matching network. It was electrically small and very thin, and its omnidirectional property was ideal for capturing incident AC wireless power from any azimuthal direction and converting it into DC power. Both a photocell as the light sensor and a thermistor as the temperature sensor were demonstrated. The resistive properties of the photocell and thermistor changed the rectifier’s output voltage level; an acoustic alarm was activated once a threshold value was attained. Second, an electrically small, low-profile NFRP Huygens antenna was similarly integrated with the same light- and temperature-sensor-augmented rectifiers. Their unidirectional nature was very suitable for surface-mounted wireless power transfer (WPT) applications (i.e., on-body and on-wall sensors). Measurements of the prototypes of both the light- and temperature-sensor-augmented omni- and unidirectional rectenna systems confirmed their predicted performance characteristics.


2017 ◽  
Vol 59 (2) ◽  
pp. 670-676 ◽  
Author(s):  
Da Li ◽  
Tian-Wu Li ◽  
Ran Hao ◽  
Hong-Sheng Chen ◽  
Wen-Yan Yin ◽  
...  

Author(s):  
B. Anudeep ◽  
K. Krishnamoorthy ◽  
P. H. Rao

Abstract A low-profile, wideband dual-polarized 1 × 2 multiple-input-multiple-output (MIMO) antenna with frequency selective surface (FSS) decoupling technique is presented. Low profile is realized with two different artificial magnetic conductor (AMC) cells out of which one operates at 3.5 GHz and other with dual band at 3.1 and 4.5 GHz. The proposed antenna height is maintained at 0.125λ0 which is significantly reduced when compared with the conventional perfect electric conductor (PEC) ground plane. Wideband dual polarization is enabled by two pairs of bow-tie antenna elements surrounded by a square ring placed in the orthogonal orientation. To mitigate the near-field coupling in 1 × 2 MIMO an FSS wall is constructed with wide band stop characteristics from 2.85 to 4.75 GHz. Measured results show by inserting FSS wall vertically, coupling reduction is improved by 27 dB over the existing coupling and the antenna exhibits a bandwidth of 57.14% (2.95–4.95 GHz) for VSWR<2 with port isolation of more than 25 dB for entire band of operation.


Sign in / Sign up

Export Citation Format

Share Document