scholarly journals Single-Shot Waterless Low-Profile Photoacoustic System: Near-Field Volumetric Imaging In Vivo for Blood Vessels Based on Capacitive Micromachined Ultrasonic Transducer (CMUT)

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 995 ◽  
Author(s):  
Won Choi ◽  
Young Kim ◽  
Hyeong Jo ◽  
Joo Pyun ◽  
Soo Kwon ◽  
...  

Intensive research on photoacoustics (PA) for imaging of the living human body, including the skin, vessels, and tumors, has recently been conducted. We propose a PA measurement system based on a capacitive micromachined ultrasonic transducer (CMUT) with waterless coupling, short measurement time (<1 s), backward light irradiation, and a low-profile ultrasonic receiver unit (<1 cm). We fabricate a 64-element CMUT ring array with 6.2 mm diameter and 10.4 MHz center frequency in air, and 100% yield and uniform element response. To validate the PA tissue characterization, we employ pencil lead and red ink as solid and liquid models, respectively, and a living body to target moles and vessels. The system implements a near-field imaging system consisting of a 6 mm polydimethylsiloxane (PDMS) matching layer between the object and CMUT, which has a 3.7 MHz center frequency in PDMS. Experiments were performed in a waterless contact on the PDMS and the laser was irradiated with a 1 cm diameter. The experimental results show the feasibility of this near-field PA imaging system for position and depth detection of skin, mole, vessel cells, etc. Therefore, a system applicable to a low-profile compact biomedical device is presented.

Author(s):  
Yuanyu Yu ◽  
Jiujiang Wang ◽  
Xin Liu ◽  
Sio Hang Pun ◽  
Weibao Qiu ◽  
...  

Background:: Ultrasound is widely used in the applications of underwater imaging. Capacitive micromachined ultrasonic transducer (CMUT) is a promising candidate to the traditional piezoelectric ultrasonic transducer. In underwater ultrasound imaging, better resolutions can be achieved with a higher frequency ultrasound. Therefore, a CMUT array for high-frequency ultrasound imaging is proposed in this work. Methods:: Analytical methods are used to calculate the center frequency in water and the pull-in voltage for determining the operating point of CMUT. Finite element method model was developed to finalize the design parameters. The CMUT array was fabricated with a five-mask sacrificial release process. Results:: The CMUT array owned an immersed center frequency of 2.6 MHz with a 6 dB fractional bandwidth of 123 %. The pull-in voltage of the CMUT array was 85 V. An underwater imaging experiment was carried out with the target of three steel wires. Conclusion:: In this study, we have developed CMUT for high-frequency underwater imaging. The experiment showed that the CMUT can detect the steel wires with the diameter of 100 μm and the axial resolution was 0.582 mm, which is close to one wavelength of ultrasound in 2.6 MHz.


2021 ◽  
Vol 13 (17) ◽  
pp. 3366
Author(s):  
Shunjun Wei ◽  
Zichen Zhou ◽  
Mou Wang ◽  
Jinshan Wei ◽  
Shan Liu ◽  
...  

Millimeter-wave (MMW) 3-D imaging technology is becoming a research hotspot in the field of safety inspection, intelligent driving, etc., due to its all-day, all-weather, high-resolution and non-destruction feature. Unfortunately, due to the lack of a complete 3-D MMW radar dataset, many urgent theories and algorithms (e.g., imaging, detection, classification, clustering, filtering, and others) cannot be fully verified. To solve this problem, this paper develops an MMW 3-D imaging system and releases a high-resolution 3-D MMW radar dataset for imaging and evaluation, named as 3DRIED. The dataset contains two different types of data patterns, which are the raw echo data and the imaging results, respectively, wherein 81 high-quality raw echo data are presented mainly for near-field safety inspection. These targets cover dangerous metal objects such as knives and guns. Free environments and concealed environments are considered in experiments. Visualization results are presented with corresponding 2-D and 3-D images; the pixels of the 3-D images are 512×512×6. In particular, the presented 3DRIED is generated by the W-band MMW radar with a center frequency of 79GHz, and the theoretical 3-D resolution reaches 2.8 mm × 2.8 mm × 3.75 cm. Notably, 3DRIED has 5 advantages: (1) 3-D raw data and imaging results; (2) high-resolution; (3) different targets; (4) applicability for evaluation and analysis of different post processing. Moreover, the numerical evaluation of high-resolution images with different types of 3-D imaging algorithms, such as range migration algorithm (RMA), compressed sensing algorithm (CSA) and deep neural networks, can be used as baselines. Experimental results reveal that the dataset can be utilized to verify and evaluate the aforementioned algorithms, demonstrating the benefits of the proposed dataset.


Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 319 ◽  
Author(s):  
Mansoor Ahmad ◽  
Ayhan Bozkurt ◽  
Omid Farhanieh

This article presents a new wafer-bonding fabrication technique for Capacitive Micromachined Ultrasonic Transducers (CMUTs) using polymethyl methacrylate (PMMA). The PMMA-based single-mask and single-dry-etch step-bonding device is much simpler, and reduces process steps and cost as compared to other wafer-bonding methods and sacrificial-layer processes. A low-temperature (< 180 ∘ C ) bonding process was carried out in a purpose-built bonding tool to minimize the involvement of expensive laboratory equipment. A single-element CMUT comprising 16 cells of 2.5 mm radius and 800 nm cavity was fabricated. The center frequency of the device was set to 200 kHz for underwater communication purposes. Characterization of the device was carried out in immersion, and results were subsequently validated with data from Finite Element Analysis (FEA). Results show the feasibility of the fabricated CMUTs as receivers for underwater applications.


1996 ◽  
Vol 18 (4) ◽  
pp. 231-239 ◽  
Author(s):  
Koichi Yokosawa ◽  
Ryuichi Shinomura ◽  
Shyuzo Sano ◽  
Yukio Ito ◽  
Shizuo Ishikawa ◽  
...  

Ultrasound transducers with center frequency above 100 MHz are expected to be used for future diagnostic tissue characterization because of their high lateral resolution. We have fabricated a 120-MHz transducer that consists of a ZnO piezoelectric film on a sapphire substrate that has a concave acoustic lens. The lateral resolution was calculated as 13 μm. The insertion loss of the transducer, defined as the difference between the received voltage and the transmitted one, was −45 dB. The 6-dB bandwidth of the received signal was approximately 40 MHz. The transducer was mounted in a rod-shaped probe to ensure contact with in vivo tissue, because of the low penetration of ultrasound in the high frequency region. While the probe is rotated and moved along its axis mechanically, the transducer receives backscattered ultrasound from the surrounding tissue on a cylindrical plane that is kept a constant distance from the probe surface. The feasibility of this high-frequency tissue imaging probe has been demonstrated by obtaining preliminary images of an in vitro bovine kidney.


Diagnostics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 57 ◽  
Author(s):  
Rytis Jurkonis ◽  
Monika Makūnaitė ◽  
Mindaugas Baranauskas ◽  
Arūnas Lukoševičius ◽  
Andrius Sakalauskas ◽  
...  

The purpose of this paper is a quantification of displacement parameters used in the imaging of brain tissue endogenous motion using ultrasonic radiofrequency (RF) signals. In a preclinical study, an ultrasonic diagnostic system with RF output was equipped with dedicated signal processing software and subject head–ultrasonic transducer stabilization. This allowed the use of RF scanning frames for the calculation of micrometer-range displacements, excluding sonographer-induced motions. Analysis of quantitative displacement estimates in dynamical phantom experiments showed that displacements of 55 µm down to 2 µm were quantified as confident according to Pearson correlation between signal fragments (minimum p ≤ 0.001). The same algorithm and scanning hardware were used in experiments and clinical imaging which allows translating phantom results to Alzheimer’s disease patients and healthy elderly subjects as examples. The confident quantitative displacement waveforms of six in vivo heart-cycle episodes ranged from 8 µm up to 263 µm (Pearson correlation p ≤ 0.01). Displacement time sequences showed promising possibilities to evaluate the morphology of endogenous displacement signals at each point of the scanning plane, while displacement maps—regional distribution of displacement parameters—were essential for tissue characterization.


Sign in / Sign up

Export Citation Format

Share Document