Fabrication of large-scale ordered arrays of plasmonic nanostructures by nano-sphere lithography

Author(s):  
A. Colombelli ◽  
M.G. Manera ◽  
R. Rella
2014 ◽  
Vol 50 (11) ◽  
pp. 1-5 ◽  
Author(s):  
Sang-Yeob Sung ◽  
Mazin M. Maqableh ◽  
Xiaobo Huang ◽  
K. Sai Madhukar Reddy ◽  
R. H. Victora ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Y. Premkumar Singh ◽  
Amit Jain ◽  
Avinashi Kapoor

The paper investigates the light incoupling into c-Si solar cells due to the excitation of localized surface plasmon resonances in periodic metallic nanoparticles by finite-difference time-domain (FDTD) technique. A significant enhancement of AM1.5G solar radiation transmission has been demonstrated by depositing nanoparticles of various metals on the upper surface of a semi-infinite Si substrate. Plasmonic nanostructures located close to the cell surface can scatter incident light efficiently into the cell. Al nanoparticles were found to be superior to Ag, Cu, and Au nanoparticles due to the improved transmission of light over almost the entire solar spectrum and, thus, can be a potential low-cost plasmonic metal for large-scale implementation of solar cells.


2016 ◽  
Vol 186 ◽  
pp. 95-106 ◽  
Author(s):  
Partha Pratim Patra ◽  
Rohit Chikkaraddy ◽  
Sreeja Thampi ◽  
Ravi P. N. Tripathi ◽  
G. V. Pavan Kumar

We discuss two aspects of the plasmofluidic assembly of plasmonic nanostructures at the metal–fluid interface. First, we experimentally show how three and four spot evanescent-wave excitation can lead to unconventional assembly of plasmonic nanoparticles at the metal–fluid interface. We observed that the pattern of assembly was mainly governed by the plasmon interference pattern at the metal–fluid interface, and further led to interesting dynamic effects within the assembly. The interference patterns were corroborated by 3D finite-difference time-domain simulations. Secondly, we show how anisotropic geometry, such as Ag nanowires, can be assembled and aligned in unstructured and structured plasmofluidic fields. We found that by structuring the metal-film, Ag nanowires can be aligned at the metal–fluid interface with a single evanescent-wave excitation, thus highlighting the prospect of assembling plasmonic circuits in a fluid. An interesting aspect of our method is that we obtain the assembly at locations away from the excitation points, thus leading to remote assembly of nanostructures. The results discussed herein may have implications in realizing a platform for reconfigurable plasmonic metamaterials, and a test-bed to understand the effect of plasmon interference on assembly of nanostructures in fluids.


Author(s):  
Yong Lei ◽  
Gerhard Wilde

A new surface nano-patterning technique, the so-called UTAM nano-patterning approach, is reported here in this paper. Using the UTAM nano-patterning technique, large-scale arrays of highly ordered nanostructures (nanoparticles and nanoholes) in the range of square centimeters have been fabricated on substrates in a massive parallel way. The resulting nanostructures are characterized by highly defined and controllable size, shape, composition, and spacing of the nanostructures. By changing the structural parameters of the nanoparticles, the properties of the nanoparticle arrays can be tuned. This non-lithographic surface nano-patterning approach provides an efficient and low-cost alternative in fabricating large-scale ordered arrays of surface nanostructures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthew T. Gole ◽  
Zhewen Yin ◽  
Michael Cai Wang ◽  
Wayne Lin ◽  
Ziran Zhou ◽  
...  

AbstractHierarchical heterostructures of two-dimensional (2D) nanomaterials are versatile platforms for nanoscale optoelectronics. Further coupling of these 2D materials with plasmonic nanostructures, especially in non-close-packed morphologies, imparts new metastructural properties such as increased photosensitivity as well as spectral selectivity and range. However, the integration of plasmonic nanoparticles with 2D materials has largely been limited to lithographic patterning and/or undefined deposition of metallic structures. Here we show that colloidally synthesized zero-dimensional (0D) gold nanoparticles of various sizes can be deterministically self-assembled in highly-ordered, anisotropic, non-close-packed, multi-scale morphologies with templates designed from instability-driven, deformed 2D nanomaterials. The anisotropic plasmonic coupling of the particle arrays exhibits emergent polarization-dependent absorbance in the visible to near-IR regions. Additionally, controllable metasurface arrays of nanoparticles by functionalization with varying polymer brushes modulate the plasmonic coupling between polarization dependent and independent assemblies. This self-assembly method shows potential for bottom-up nanomanufacturing of diverse optoelectronic components and can potentially be adapted to a wide array of nanoscale 0D, 1D, and 2D materials.


Nanophotonics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 943-951
Author(s):  
Pau Molet ◽  
Luz Karimé Gil-Herrera ◽  
Juan Luis Garcia-Pomar ◽  
Niccolò Caselli ◽  
Álvaro Blanco ◽  
...  

AbstractHigh-index dielectric nanostructures have emerged as an appealing complement to plasmonic nanostructures, offering similar light management capabilities at the nanoscale but free from the inherent optical losses. Despite the great interest in these all-dielectric architectures, their fabrication still requires cumbersome fabrication techniques that limit their implementation in many applications. Hence, the great interest in alternative scalable procedures. Among those, the fabrication of silicon spheres is at the forefront, with several routes available in the literature. However, the exploitation of the Mie modes sustained by these silicon resonators is limited over large areas by polydispersity or a lack of long-range order. Here, we present an all-dielectric metamaterial fabricated with a low cost and highly scalable technique: a combination of soft imprinting nanolithography and chemical vapor deposition. The resulting all-dielectric metasurface is composed of an array of silicon hemispheres on top of a high refractive index dielectric substrate. This architecture allows the exploitation of high-quality Mie resonances at a large scale due to the high monodispersity of the hemispheres organized in a single crystal two-dimensional lattice. The optical response of the metasurface can be engineered by the design parameters of the nanoimprinted structure. We further demonstrate the potential of this platform to enhance light emission by coupling dye molecules to the sustained Mie resonances and measuring both an eight-fold amplified signal and a triple lifetime reduction.


Sign in / Sign up

Export Citation Format

Share Document