Prediction of far-field bistatic scattering cross section using spherical, cylindrical and planar scanned near-field data

Author(s):  
Y. Inasawa
1960 ◽  
Vol 38 (12) ◽  
pp. 1665-1676 ◽  
Author(s):  
M. A. Plonus

Far-field backscattering from a perfectly conducting cylinder with a surrounding shell has been investigated. The spacing of the shell from the cylinder and thickness of the shell are arbitrary. The material in the shell is also arbitrary and is characterized by the propagation constant h. The incident plane wave is at right angles to the cylinder, and is either horizontally or perpendicularly polarized. When the shell is thin in units of wavelength a much simpler expression for the backscattered field coefficient is obtained. It was possible to express this coefficient in a form which resembles the coefficient from the conducting cylinder alone plus a perturbation term due to the shell. Another simplification resulted when the propagation constant h of the shell is much larger than the free-space propagation constant k.It was desirable to see what scattering properties a cylinder with a surrounding shell exhibits. The cylinder was chosen to be large with respect to wavelength and the shell spaced a resonant distance from the cylinder. The scattering cross section, for this particular combination of parameters was then given by a slowly converging series which proved too lengthy for hand-computation, and was then programmed for and computed by the IBM 704. The scattering cross section versus shell spacing is shown in graphical form.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6023
Author(s):  
Yang Liu ◽  
Weidong Hu ◽  
Wenlong Zhang ◽  
Jianhang Sun ◽  
Baige Xing ◽  
...  

Radar cross section near-field to far-field transformation (NFFFT) is a well-established methodology. Due to the testing range constraints, the measured data are mostly near-field. Existing methods employ electromagnetic theory to transform near-field data into the far-field radar cross section, which is time-consuming in data processing. This paper proposes a flexible framework, named Neural Networks Near-Field to Far-Filed Transformation (NN-NFFFT). Unlike the conventional fixed-parameter model, the near-field RCS to far-field RCS transformation process is viewed as a nonlinear regression problem that can be solved by our fast and flexible neural network. The framework includes three stages: Near-Field and Far-field dataset generation, regression estimator training, and far-field data prediction. In our framework, the Radar cross section prior information is incorporated in the Near-Field and Far-field dataset generated by a group of point-scattering targets. A lightweight neural network is then used as a regression estimator to predict the far-field RCS from the near-field RCS observation. For the target with a small RCS, the proposed method also has less data acquisition time. Numerical examples and extensive experiments demonstrate that the proposed method can take less processing time to achieve comparable accuracy. Besides, the proposed framework can employ prior information about the real scenario to improve performance further.


Author(s):  
P. J. Barratt ◽  
W. D. Collins

AbstractIt is shown that, when a plane harmonic P or S wave is incident upon a two-or three-dimensional obstacle in an infinite elastic solid, the scattering cross-section of the obstacle can be calculated from an appropriate far-field scattering amplitude.


Sign in / Sign up

Export Citation Format

Share Document