Thermal noise limit for time‐domain analogue signal processing in CMOS technologies

2016 ◽  
Vol 52 (18) ◽  
pp. 1567-1569 ◽  
Author(s):  
A. Pathan ◽  
A. Liscidini
2013 ◽  
Vol 4 ◽  
pp. 32-44 ◽  
Author(s):  
Jannis Lübbe ◽  
Matthias Temmen ◽  
Sebastian Rode ◽  
Philipp Rahe ◽  
Angelika Kühnle ◽  
...  

The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip–surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d z at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d Δ f at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip–surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured d z , we predict d Δ f for specific filter settings, a given level of detection-system noise spectral density d z ds and the cantilever-thermal-noise spectral density d z th. We find an excellent agreement between the calculated and measured values for d Δ f . Furthermore, we demonstrate that thermal noise in d Δ f , defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth.


1990 ◽  
Vol 137 (2) ◽  
pp. 61 ◽  
Author(s):  
Chris Toumazou ◽  
John Lidgey ◽  
Brett Wilson

2015 ◽  
Vol 11 (3) ◽  
pp. 3171-3183
Author(s):  
Gyula Vincze

Our objective is to generalize the Weaver-Astumian (WA) and Kaune (KA) models of thermal noise limit to the case ofcellular membrane resistivity asymmetry. The asymmetry of resistivity causes different effects in the two models. In the KAmodel, asymmetry decreases the characteristic field strength of the thermal limit over and increases it below the breakingfrequency (10  m), while asymmetry decreases the spectral field strength of the thermal noise limit at all frequencies.We show that asymmetry does not change the character of the models, showing the absence of thermal noise limit at highand low frequencies in WA and KA models, respectively.


2014 ◽  
Vol 112 (16) ◽  
Author(s):  
Wenle Weng ◽  
James D. Anstie ◽  
Thomas M. Stace ◽  
Geoff Campbell ◽  
Fred N. Baynes ◽  
...  

Author(s):  
Isabela M. Nobre ◽  
Julio L. Nicolini ◽  
Joaquim D. Garcia ◽  
Marbey Mosso

Sign in / Sign up

Export Citation Format

Share Document