scholarly journals GNSS pseudorange and time‐differenced carrier phase measurements least‐squares fusion algorithm and steady performance theoretical analysis

2019 ◽  
Vol 55 (23) ◽  
pp. 1238-1241 ◽  
Author(s):  
Nijia Qian ◽  
Guobin Chang ◽  
Jingxiang Gao
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Baowei Chen ◽  
Guobin Chang ◽  
Shengquan Li ◽  
Kailiang Deng

Attitude determination using double-differenced GNSS carrier phase measurements is studied. A realistic stochastic model is employed to take the correlations among the double-differenced measurements into full consideration. Two important issues concerning iteratively solving the nonlinear least-squares attitude determination problem are treated, namely, the initial guess and the iteration scheme. An analytical and sub-optimal solution is employed to provide the initial guess. In this solution, the orthogonal and determinant constraints among the elements of the direction cosine matrix (DCM) of the attitude are firstly ignored, and hence a relaxed 3×3 matrix is estimated using the linear weighted least-squares method. Then a mathematically feasible DCM, i.e., orthogonal and with +1 determinant, is extracted from the relaxed matrix estimate, optimally in the sense of minimum Frobenius norm. This analytical initial guess estimation method can be used for all feasible cases, including some generated ones, e.g., the case with only 3 antennas and only 3 satellites, subject possibly to some necessary, yet minor modifications. In each iteration, an error attitude, whose DCM is parameterized using the Gibbs vector, is introduced to relate the previously estimated and the true DCM. By linearizing the measurement model at the zero Gibbs vector, the least-squares estimate of the Gibbs vector is obtained and then used to correct the previously estimated DCM. By repeating this process, the truly least-squares estimate of the attitude can be achieved progressively. These are in fact Gauss-Newton iterations. For the final estimate, the variance covariance matrix (VCM) of the attitude estimation error can be retained to evaluate or predict the estimation accuracy. The extraction of the widely used roll-pitch-yaw angles and the VCM of their additive estimation errors from the final solution is also presented. Numerical experiments are conducted to check the performance of the developed theory. For the case with 3 2-meter long and orthogonally mounted baselines, 5 visible satellites, and 5-millimeter standard deviations of the carrier phase measurements, the root mean squared errors (RMSE) of the roll-pitch-yaw angles in the analytical solution are well below 0.5 degrees, and the estimates converge after only one iteration, with all three RMSEs below 0.2 degrees.


2021 ◽  
Vol 13 (9) ◽  
pp. 1621
Author(s):  
Duojie Weng ◽  
Shengyue Ji ◽  
Yangwei Lu ◽  
Wu Chen ◽  
Zhihua Li

The differential global navigation satellite system (DGNSS) is an enhancement system that is widely used to improve the accuracy of single-frequency receivers. However, distance-dependent errors are not considered in conventional DGNSS, and DGNSS accuracy decreases when baseline length increases. In network real-time kinematic (RTK) positioning, distance-dependent errors are accurately modelled to enable ambiguity resolution on the user side, and standard Radio Technical Commission for Maritime Services (RTCM) formats have also been developed to describe the spatial characteristics of distance-dependent errors. However, the network RTK service was mainly developed for carrier-phase measurements on professional user receivers. The purpose of this study was to modify the local-area DGNSS through the use of network RTK corrections. Distance-dependent errors can be reduced, and accuracy for a longer baseline length can be improved. The results in the low-latitude areas showed that the accuracy of the modified DGNSS could be improved by more than 50% for a 17.9 km baseline during solar active years. The method in this paper extends the use of available network RTK corrections with high accuracy to normal local-area DGNSS applications.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Liang Wang ◽  
Zishen Li ◽  
Ningbo Wang ◽  
Zhiyu Wang

AbstractGlobal Navigation Satellite System raw measurements from Android smart devices make accurate positioning possible with advanced techniques, e.g., precise point positioning (PPP). To achieve the sub-meter-level positioning accuracy with low-cost smart devices, the PPP algorithm developed for geodetic receivers is adapted and an approach named Smart-PPP is proposed in this contribution. In Smart-PPP, the uncombined PPP model is applied for the unified processing of single- and dual-frequency measurements from tracked satellites. The receiver clock terms are parameterized independently for the code and carrier phase measurements of each tracking signal for handling the inconsistency between the code and carrier phases measured by smart devices. The ionospheric pseudo-observations are adopted to provide absolute constraints on the estimation of slant ionospheric delays and to strengthen the uncombined PPP model. A modified stochastic model is employed to weight code and carrier phase measurements by considering the high correlation between the measurement errors and the signal strengths for smart devices. Additionally, an application software based on the Android platform is developed for realizing Smart-PPP in smart devices. The positioning performance of Smart-PPP is validated in both static and kinematic cases. Results show that the positioning errors of Smart-PPP solutions can converge to below 1.0 m within a few minutes in static mode and the converged solutions can achieve an accuracy of about 0.2 m of root mean square (RMS) both for the east, north and up components. For the kinematic test, the RMS values of Smart-PPP positioning errors are 0.65, 0.54 and 1.09 m in the east, north and up components, respectively. Static and kinematic tests both show that the Smart-PPP solutions outperform the internal results provided by the experimental smart devices.


Sign in / Sign up

Export Citation Format

Share Document