scholarly journals Energy-aware quality of information maximisation for wireless sensor networks

2016 ◽  
Vol 10 (17) ◽  
pp. 2281-2289 ◽  
Author(s):  
Pengfei Du ◽  
Qinghai Yang ◽  
Qingsu He ◽  
Kyung Sup Kwak
2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Hao Guo ◽  
Zhongming Pan ◽  
Zhiping Huang ◽  
Jing Zhou

As wireless sensor networks (WSNs) often provide incorrect and outdated information about the events in a monitored environment, quality of information (QoI) assessment is invaluable for users to manage and use the information in particular applications. In this paper, we propose a flexible framework to dynamically assess the QoI in different WSN applications, with focus on accuracy and timeliness. Our framework is constructed on the infrastructure of an information aggregation procedure under some assumptions about the network. Based on information fusion theory, two processing models are adopted to assess the accuracy of low-level measurement data and high-level decision information without the need for Ground Truth (GT). Meanwhile, our framework generally exploits two respective models according to the specific category of the information timeliness in different delay-sensitive applications. To quantify the timeliness, we utilize a practical measurement method by means of timestamp to determine the information acquisition time. The framework is evaluated by simulations, including accuracy assessment in two environmental monitoring application scenarios, and timeliness assessment in two delay-sensitive application scenarios. The simulation results show that our framework is effective and flexible for quantitative assessment of the QoI in different WSN applications.


2016 ◽  
Vol 16 (19) ◽  
pp. 7278-7286 ◽  
Author(s):  
Pengfei Du ◽  
Qinghai Yang ◽  
Zhong Shen ◽  
Kyung Sup Kwak

Author(s):  
Ghassan Samara ◽  
Mohammad Aljaidi

<span lang="EN-US">Recent developments and widespread in wireless sensor network have led to many routing protocols, many of these protocols consider the efficiency of energy as the ultimate factor to maximize the WSN lifetime. The quality of Service (QoS) requirements for different applications of wireless sensor networks has posed additional challenges. Imaging and data transmission needs both QoS aware routing and energy to ensure the efficient use of sensors. In this paper, we propose an Efficient, Energy-Aware, Least Cost, (ECQSR) quality of service routing protocol for sensor networks which can run efficiently with best-effort traffic processing. The protocol aims to maximize the lifetime of the network out of balancing energy consumption across multiple nodes, by using the concept of service differentiation, finding lower cost by finding the shortest path using nearest neighbor algorithm (NN), also put certain constraints on the delay of the path for real-time data from where link cost that captures energy nodes reserve, energy of the transmission, error rate and other parameters. The results show that the proposed protocol improves the network lifetime and low power consumption.</span>


Author(s):  
Omar Adil Mahdi ◽  
Yusor Rafid Bahar Al-Mayouf ◽  
Ahmed Basil Ghazi ◽  
Mazin Abed Mohammed ◽  
Ainuddin Wahid Abdul Wahab ◽  
...  

<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In view of this goal, a link cost function is introduced to assess the quality of the links by considering the new multi-criteria node weight metric, in which energy and load balancing are considered. The node weight is considered in constructing and updating the routing tree to achieve dynamic behavior for event-driven WSNs. The proposed EBR-DA was evaluated and validated by simulation, and the results were compared with those of InFRA and DRINA by using performance metrics for dense static networks.</p>


2018 ◽  
pp. 714-726
Author(s):  
Carlos Abreu ◽  
Paulo M. Mendes

Biomedical wireless sensor networks are a key technology to enable the development of new healthcare services and/or applications, reducing costs and improving the citizen's quality of life. However, since they deal with health data, such networks should implement mechanisms to enforce high levels of quality of service. In most cases, the sensor nodes that form such networks are small and battery powered, and these extra quality of service mechanisms mean significant lifetime reduction due to the extra energy consumption. The network lifetime is thus a relevant feature to ensure the necessary quality of service requirements. In order to maximise the network lifetime, and its ability to offer the required quality of service, new strategies are needed to increase the energy efficiency, and balance in the network. The focus of this work goes to the effective use of the available energy in each node, combined with information about the reliability of the wireless links, as a metric to form reliable and energy-aware routes throughout the network. This paper present and discusses two different deployment strategies using energy-aware routing and relay nodes, assessed for different logical topologies. The authors' conclusion is that the use of energy-aware routing combined with strategic placed relay nodes my increase the network lifetime as high as 45%.


Sign in / Sign up

Export Citation Format

Share Document