Multimodal biometric recognition systems using deep learning based on the finger vein and finger knuckle print fusion

2020 ◽  
Vol 14 (15) ◽  
pp. 3859-3868
Author(s):  
Sara Daas ◽  
Amira Yahi ◽  
Toufik Bakir ◽  
Mouna Sedhane ◽  
Mohamed Boughazi ◽  
...  
Author(s):  
Young Ho Park ◽  
Dat Nguyen Tien ◽  
Hyeon Chang Lee ◽  
Kang Ryoung Park ◽  
Eui Chul Lee ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5523 ◽  
Author(s):  
Nada Alay ◽  
Heyam H. Al-Baity

With the increasing demand for information security and security regulations all over the world, biometric recognition technology has been widely used in our everyday life. In this regard, multimodal biometrics technology has gained interest and became popular due to its ability to overcome a number of significant limitations of unimodal biometric systems. In this paper, a new multimodal biometric human identification system is proposed, which is based on a deep learning algorithm for recognizing humans using biometric modalities of iris, face, and finger vein. The structure of the system is based on convolutional neural networks (CNNs) which extract features and classify images by softmax classifier. To develop the system, three CNN models were combined; one for iris, one for face, and one for finger vein. In order to build the CNN model, the famous pertained model VGG-16 was used, the Adam optimization method was applied and categorical cross-entropy was used as a loss function. Some techniques to avoid overfitting were applied, such as image augmentation and dropout techniques. For fusing the CNN models, different fusion approaches were employed to explore the influence of fusion approaches on recognition performance, therefore, feature and score level fusion approaches were applied. The performance of the proposed system was empirically evaluated by conducting several experiments on the SDUMLA-HMT dataset, which is a multimodal biometrics dataset. The obtained results demonstrated that using three biometric traits in biometric identification systems obtained better results than using two or one biometric traits. The results also showed that our approach comfortably outperformed other state-of-the-art methods by achieving an accuracy of 99.39%, with a feature level fusion approach and an accuracy of 100% with different methods of score level fusion.


2021 ◽  
Vol 11 (13) ◽  
pp. 5880
Author(s):  
Paloma Tirado-Martin ◽  
Raul Sanchez-Reillo

Nowadays, Deep Learning tools have been widely applied in biometrics. Electrocardiogram (ECG) biometrics is not the exception. However, the algorithm performances rely heavily on a representative dataset for training. ECGs suffer constant temporal variations, and it is even more relevant to collect databases that can represent these conditions. Nonetheless, the restriction in database publications obstructs further research on this topic. This work was developed with the help of a database that represents potential scenarios in biometric recognition as data was acquired in different days, physical activities and positions. The classification was implemented with a Deep Learning network, BioECG, avoiding complex and time-consuming signal transformations. An exhaustive tuning was completed including variations in enrollment length, improving ECG verification for more complex and realistic biometric conditions. Finally, this work studied one-day and two-days enrollments and their effects. Two-days enrollments resulted in huge general improvements even when verification was accomplished with more unstable signals. EER was improved in 63% when including a change of position, up to almost 99% when visits were in a different day and up to 91% if the user experienced a heartbeat increase after exercise.


2021 ◽  
pp. 1-13
Author(s):  
Shikhar Tyagi ◽  
Bhavya Chawla ◽  
Rupav Jain ◽  
Smriti Srivastava

Single biometric modalities like facial features and vein patterns despite being reliable characteristics show limitations that restrict them from offering high performance and robustness. Multimodal biometric systems have gained interest due to their ability to overcome the inherent limitations of the underlying single biometric modalities and generally have been shown to improve the overall performance for identification and recognition purposes. This paper proposes highly accurate and robust multimodal biometric identification as well as recognition systems based on fusion of face and finger vein modalities. The feature extraction for both face and finger vein is carried out by exploiting deep convolutional neural networks. The fusion process involves combining the extracted relevant features from the two modalities at score level. The experimental results over all considered public databases show a significant improvement in terms of identification and recognition accuracy as well as equal error rates.


Sign in / Sign up

Export Citation Format

Share Document