Literature survey of deep learning-based vulnerability analysis on source code

IET Software ◽  
2020 ◽  
Vol 14 (6) ◽  
pp. 654-664
Author(s):  
Abubakar Omari Abdallah Semasaba ◽  
Wei Zheng ◽  
Xiaoxue Wu ◽  
Samuel Akwasi Agyemang
2021 ◽  
Author(s):  
Marco Luca Sbodio ◽  
Natasha Mulligan ◽  
Stefanie Speichert ◽  
Vanessa Lopez ◽  
Joao Bettencourt-Silva

There is a growing trend in building deep learning patient representations from health records to obtain a comprehensive view of a patient’s data for machine learning tasks. This paper proposes a reproducible approach to generate patient pathways from health records and to transform them into a machine-processable image-like structure useful for deep learning tasks. Based on this approach, we generated over a million pathways from FAIR synthetic health records and used them to train a convolutional neural network. Our initial experiments show the accuracy of the CNN on a prediction task is comparable or better than other autoencoders trained on the same data, while requiring significantly less computational resources for training. We also assess the impact of the size of the training dataset on autoencoders performances. The source code for generating pathways from health records is provided as open source.


2020 ◽  
Vol 34 (06) ◽  
pp. 10393-10401
Author(s):  
Bing Wang ◽  
Changhao Chen ◽  
Chris Xiaoxuan Lu ◽  
Peijun Zhao ◽  
Niki Trigoni ◽  
...  

Deep learning has achieved impressive results in camera localization, but current single-image techniques typically suffer from a lack of robustness, leading to large outliers. To some extent, this has been tackled by sequential (multi-images) or geometry constraint approaches, which can learn to reject dynamic objects and illumination conditions to achieve better performance. In this work, we show that attention can be used to force the network to focus on more geometrically robust objects and features, achieving state-of-the-art performance in common benchmark, even if using only a single image as input. Extensive experimental evidence is provided through public indoor and outdoor datasets. Through visualization of the saliency maps, we demonstrate how the network learns to reject dynamic objects, yielding superior global camera pose regression performance. The source code is avaliable at https://github.com/BingCS/AtLoc.


Author(s):  
Balázs Szalontai ◽  
András Vadász ◽  
Zsolt Richárd Borsi ◽  
Teréz A. Várkonyi ◽  
Balázs Pintér ◽  
...  
Keyword(s):  

2019 ◽  
Vol 23 (6) ◽  
pp. 1243-1269
Author(s):  
Ahmad A. Saifan ◽  
Nawzat Al Smadi

Author(s):  
Yasir Hussain ◽  
Zhiqiu Huang ◽  
Yu Zhou ◽  
Senzhang Wang

In recent years, deep learning models have shown great potential in source code modeling and analysis. Generally, deep learning-based approaches are problem-specific and data-hungry. A challenging issue of these approaches is that they require training from scratch for a different related problem. In this work, we propose a transfer learning-based approach that significantly improves the performance of deep learning-based source code models. In contrast to traditional learning paradigms, transfer learning can transfer the knowledge learned in solving one problem into another related problem. First, we present two recurrent neural network-based models RNN and GRU for the purpose of transfer learning in the domain of source code modeling. Next, via transfer learning, these pre-trained (RNN and GRU) models are used as feature extractors. Then, these extracted features are combined into attention learner for different downstream tasks. The attention learner leverages from the learned knowledge of pre-trained models and fine-tunes them for a specific downstream task. We evaluate the performance of the proposed approach with extensive experiments with the source code suggestion task. The results indicate that the proposed approach outperforms the state-of-the-art models in terms of accuracy, precision, recall and F-measure without training the models from scratch.


2020 ◽  
Vol 16 (5) ◽  
pp. 448-454 ◽  
Author(s):  
Meenal Chaudhari ◽  
Niraj Thapa ◽  
Kaushik Roy ◽  
Robert H. Newman ◽  
Hiroto Saigo ◽  
...  

DeepRMethylSite is an ensemble-based deep learning model that takes protein sequences as input and predicts sites of Arginine methylation. The implementation and source code are provided at https://github.com/dukkakc/DeepRMethylSite.


Sign in / Sign up

Export Citation Format

Share Document