scholarly journals AtLoc: Attention Guided Camera Localization

2020 ◽  
Vol 34 (06) ◽  
pp. 10393-10401
Author(s):  
Bing Wang ◽  
Changhao Chen ◽  
Chris Xiaoxuan Lu ◽  
Peijun Zhao ◽  
Niki Trigoni ◽  
...  

Deep learning has achieved impressive results in camera localization, but current single-image techniques typically suffer from a lack of robustness, leading to large outliers. To some extent, this has been tackled by sequential (multi-images) or geometry constraint approaches, which can learn to reject dynamic objects and illumination conditions to achieve better performance. In this work, we show that attention can be used to force the network to focus on more geometrically robust objects and features, achieving state-of-the-art performance in common benchmark, even if using only a single image as input. Extensive experimental evidence is provided through public indoor and outdoor datasets. Through visualization of the saliency maps, we demonstrate how the network learns to reject dynamic objects, yielding superior global camera pose regression performance. The source code is avaliable at https://github.com/BingCS/AtLoc.

Author(s):  
Yasir Hussain ◽  
Zhiqiu Huang ◽  
Yu Zhou ◽  
Senzhang Wang

In recent years, deep learning models have shown great potential in source code modeling and analysis. Generally, deep learning-based approaches are problem-specific and data-hungry. A challenging issue of these approaches is that they require training from scratch for a different related problem. In this work, we propose a transfer learning-based approach that significantly improves the performance of deep learning-based source code models. In contrast to traditional learning paradigms, transfer learning can transfer the knowledge learned in solving one problem into another related problem. First, we present two recurrent neural network-based models RNN and GRU for the purpose of transfer learning in the domain of source code modeling. Next, via transfer learning, these pre-trained (RNN and GRU) models are used as feature extractors. Then, these extracted features are combined into attention learner for different downstream tasks. The attention learner leverages from the learned knowledge of pre-trained models and fine-tunes them for a specific downstream task. We evaluate the performance of the proposed approach with extensive experiments with the source code suggestion task. The results indicate that the proposed approach outperforms the state-of-the-art models in terms of accuracy, precision, recall and F-measure without training the models from scratch.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alessandra Lumini ◽  
Loris Nanni ◽  
Gianluca Maguolo

In this paper, we present a study about an automated system for monitoring underwater ecosystems. The system here proposed is based on the fusion of different deep learning methods. We study how to create an ensemble based of different Convolutional Neural Network (CNN) models, fine-tuned on several datasets with the aim of exploiting their diversity. The aim of our study is to experiment the possibility of fine-tuning CNNs for underwater imagery analysis, the opportunity of using different datasets for pre-training models, the possibility to design an ensemble using the same architecture with small variations in the training procedure.Our experiments, performed on 5 well-known datasets (3 plankton and 2 coral datasets) show that the combination of such different CNN models in a heterogeneous ensemble grants a substantial performance improvement with respect to other state-of-the-art approaches in all the tested problems. One of the main contributions of this work is a wide experimental evaluation of famous CNN architectures to report the performance of both the single CNN and the ensemble of CNNs in different problems. Moreover, we show how to create an ensemble which improves the performance of the best single model. The MATLAB source code is freely link provided in title page.


2019 ◽  
Vol 9 (10) ◽  
pp. 2138 ◽  
Author(s):  
Cong Pan ◽  
Minyan Lu ◽  
Biao Xu ◽  
Houleng Gao

To improve software reliability, software defect prediction is used to find software bugs and prioritize testing efforts. Recently, some researchers introduced deep learning models, such as the deep belief network (DBN) and the state-of-the-art convolutional neural network (CNN), and used automatically generated features extracted from abstract syntax trees (ASTs) and deep learning models to improve defect prediction performance. However, the research on the CNN model failed to reveal clear conclusions due to its limited dataset size, insufficiently repeated experiments, and outdated baseline selection. To solve these problems, we built the PROMISE Source Code (PSC) dataset to enlarge the original dataset in the CNN research, which we named the Simplified PROMISE Source Code (SPSC) dataset. Then, we proposed an improved CNN model for within-project defect prediction (WPDP) and compared our results to existing CNN results and an empirical study. Our experiment was based on a 30-repetition holdout validation and a 10 * 10 cross-validation. Experimental results showed that our improved CNN model was comparable to the existing CNN model, and it outperformed the state-of-the-art machine learning models significantly for WPDP. Furthermore, we defined hyperparameter instability and examined the threat and opportunity it presents for deep learning models on defect prediction.


Author(s):  
Aiping Yang ◽  
Haixin Wang ◽  
Zhong Ji ◽  
Yanwei Pang ◽  
Ling Shao

Recently, deep learning-based single image dehazing method has been a popular approach to tackle dehazing. However, the existing dehazing approaches are performed directly on the original hazy image, which easily results in image blurring and noise amplifying. To address this issue, the paper proposes a DPDP-Net (Dual-Path in Dual-Path network) framework by employing a hierarchical dual path network. Specifically, the first-level dual-path network consists of a Dehazing Network and a Denoising Network, where the Dehazing Network is responsible for haze removal in the structural layer, and the Denoising Network deals with noise in the textural layer, respectively. And the second-level dual-path network lies in the Dehazing Network, which has an AL-Net (Atmospheric Light Network) and a TM-Net (Transmission Map Network), respectively. Concretely, the AL-Net aims to train the non-uniform atmospheric light, while the TM-Net aims to train the transmission map that reflects the visibility of the image. The final dehazing image is obtained by nonlinearly fusing the output of the Denoising Network and the Dehazing Network. Extensive experiments demonstrate that our proposed DPDP-Net achieves competitive performance against the state-of-the-art methods on both synthetic and real-world images.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


2020 ◽  
Author(s):  
Pathikkumar Patel ◽  
Bhargav Lad ◽  
Jinan Fiaidhi

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.


2021 ◽  
Vol 15 (8) ◽  
pp. 898-911
Author(s):  
Yongqing Zhang ◽  
Jianrong Yan ◽  
Siyu Chen ◽  
Meiqin Gong ◽  
Dongrui Gao ◽  
...  

Rapid advances in biological research over recent years have significantly enriched biological and medical data resources. Deep learning-based techniques have been successfully utilized to process data in this field, and they have exhibited state-of-the-art performances even on high-dimensional, nonstructural, and black-box biological data. The aim of the current study is to provide an overview of the deep learning-based techniques used in biology and medicine and their state-of-the-art applications. In particular, we introduce the fundamentals of deep learning and then review the success of applying such methods to bioinformatics, biomedical imaging, biomedicine, and drug discovery. We also discuss the challenges and limitations of this field, and outline possible directions for further research.


IET Software ◽  
2020 ◽  
Vol 14 (6) ◽  
pp. 654-664
Author(s):  
Abubakar Omari Abdallah Semasaba ◽  
Wei Zheng ◽  
Xiaoxue Wu ◽  
Samuel Akwasi Agyemang

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1962
Author(s):  
Enrico Buratto ◽  
Adriano Simonetto ◽  
Gianluca Agresti ◽  
Henrik Schäfer ◽  
Pietro Zanuttigh

In this work, we propose a novel approach for correcting multi-path interference (MPI) in Time-of-Flight (ToF) cameras by estimating the direct and global components of the incoming light. MPI is an error source linked to the multiple reflections of light inside a scene; each sensor pixel receives information coming from different light paths which generally leads to an overestimation of the depth. We introduce a novel deep learning approach, which estimates the structure of the time-dependent scene impulse response and from it recovers a depth image with a reduced amount of MPI. The model consists of two main blocks: a predictive model that learns a compact encoded representation of the backscattering vector from the noisy input data and a fixed backscattering model which translates the encoded representation into the high dimensional light response. Experimental results on real data show the effectiveness of the proposed approach, which reaches state-of-the-art performances.


Sign in / Sign up

Export Citation Format

Share Document