High-performance front-end rectifier system for telecommunication power supplies

2006 ◽  
Vol 153 (4) ◽  
pp. 473 ◽  
Author(s):  
W.-Y. Choi ◽  
J.-M. Kwon ◽  
B.-H. Kwon
2012 ◽  
Vol 132 (7) ◽  
pp. 684-690 ◽  
Author(s):  
Toshikazu Okubo ◽  
Hiroyuki Shoji ◽  
Hideho Yamamura ◽  
Shinobu Irikura ◽  
Naoki Maru

Author(s):  
Harold O. Fried ◽  
Loren W. Tauer

This article explores how well an individual manages his or her own talent to achieve high performance in an individual sport. Its setting is the Ladies Professional Golf Association (LPGA). The order-m approach is explained. Additionally, the data and the empirical findings are presented. The inputs measure fundamental golfing athletic ability. The output measures success on the LPGA tour. The correlation coefficient between earnings per event and the ability to perform under pressure is 0.48. The careers of golfers occur on the front end of the age distribution. There is a classic trade-off between the inevitable deterioration in the mental ability to handle the pressure and experience gained with time. The ability to perform under pressure peaks at age 37.


Author(s):  
Sheng Kang ◽  
Guofeng Chen ◽  
Chun Wang ◽  
Ruiquan Ding ◽  
Jiajun Zhang ◽  
...  

With the advent of big data and cloud computing solutions, enterprise demand for servers is increasing. There is especially high growth for Intel based x86 server platforms. Today’s datacenters are in constant pursuit of high performance/high availability computing solutions coupled with low power consumption and low heat generation and the ability to manage all of this through advanced telemetry data gathering. This paper showcases one such solution of an updated rack and server architecture that promises such improvements. The ability to manage server and data center power consumption and cooling more completely is critical in effectively managing datacenter costs and reducing the PUE in the data center. Traditional Intel based 1U and 2U form factor servers have existed in the data center for decades. These general purpose x86 server designs by the major OEM’s are, for all practical purposes, very similar in their power consumption and thermal output. Power supplies and thermal designs for server in the past have not been optimized for high efficiency. In addition, IT managers need to know more information about servers in order to optimize data center cooling and power use, an improved server/rack design needs to be built to take advantage of more efficient power supplies or PDU’s and more efficient means of cooling server compute resources than from traditional internal server fans. This is the constant pursuit of corporations looking at new ways to improving efficiency and gaining a competitive advantage. A new way to optimize power consumption and improve cooling is a complete redesign of the traditional server rack. Extracting internal server power supplies and server fans and centralizing these within the rack aims to achieve this goal. This type of design achieves an entirely new low power target by utilizing centralized, high efficiency PDU’s that power all servers within the rack. Cooling is improved by also utilizing large efficient rack based fans for airflow to all servers. Also, opening up the server design is to allow greater airflow across server components for improved cooling. This centralized power supply breaks through the traditional server power limits. Rack based PDU’s can adjust the power efficiency to a more optimum point. Combine this with the use of online + offline modes within one single power supply. Cold backup makes data center power to achieve optimal power efficiency. In addition, unifying the mechanical structure and thermal definitions within the rack solution for server cooling and PSU information allows IT to collect all server power and thermal information centrally for improved ease in analyzing and processing.


2018 ◽  
Vol 23 (3) ◽  
pp. 305-318
Author(s):  
Yinglu Zhang ◽  
Zhenzhu Xi ◽  
Xingpeng Chen ◽  
Honglan Wei ◽  
Long Huang ◽  
...  

High-performance audio-frequency magnetotelluric (AMT) instrument is one means of obtaining high-quality electromagnetic (EM) data. To improve the ability of AMT system to obtain high-quality data, this paper presents a design for a high-performance analog front-end circuit for AMT instrument. It mainly consists of the input protection, preamplifier, passive high pass filter, power frequency notch filter, programmable amplifier, and active low pass filter. In addition, this paper proposes a design of low-noise, high-performance preamplifier, which improves the common-mode rejection ratio (CMRR) of analog front-end circuit and effectively enhances the signal-to-noise ratio (SNR) of the circuit. The front-end circuit utilized two-stage twin-T notch filter to effectively suppress the strong interference of fundamental component of power frequency. Also, it used signal relays to control circuit gain and selection of cutoff frequency of anti-aliasing filter, resulting in the improvement of the capability of the analog-to-digital Converter (ADC) to distinguish weak EM signal. The measured results of the electric field and magnetic field channel showed that: 1) The circuit works in frequency range of 1 Hz∼100 kHz; 2) The CMRR values of the preamplifier of electric field channel at low frequencies (1 Hz∼1 kHz) are 111 dB and 97 dB when the gains are 20 dB and 6 dB respectively; 3) The maximum attenuation fundamental power frequency can reach −39.46 dB and −39.04 dB respectively; 4) The total harmonic distortion rate at 1 kHz is 0.022% and 0.029% respectively; 5) The input noise levels of electric field channel are 12.67nV / [Formula: see text] @10Hz and 8.15V / [Formula: see text] @1kHz, while the input noise levels of magnetic field channel are 8.97nV / [Formula: see text] @10Hz and 6.16V / [Formula: see text] @1kHz; and 6) In conclusion, the analog front-end circuit is superior to meet the requirements of the AMT methods, and provides a useful reference for the development of AMT instrument.


Sign in / Sign up

Export Citation Format

Share Document