Rack Server Solution in Data Center

Author(s):  
Sheng Kang ◽  
Guofeng Chen ◽  
Chun Wang ◽  
Ruiquan Ding ◽  
Jiajun Zhang ◽  
...  

With the advent of big data and cloud computing solutions, enterprise demand for servers is increasing. There is especially high growth for Intel based x86 server platforms. Today’s datacenters are in constant pursuit of high performance/high availability computing solutions coupled with low power consumption and low heat generation and the ability to manage all of this through advanced telemetry data gathering. This paper showcases one such solution of an updated rack and server architecture that promises such improvements. The ability to manage server and data center power consumption and cooling more completely is critical in effectively managing datacenter costs and reducing the PUE in the data center. Traditional Intel based 1U and 2U form factor servers have existed in the data center for decades. These general purpose x86 server designs by the major OEM’s are, for all practical purposes, very similar in their power consumption and thermal output. Power supplies and thermal designs for server in the past have not been optimized for high efficiency. In addition, IT managers need to know more information about servers in order to optimize data center cooling and power use, an improved server/rack design needs to be built to take advantage of more efficient power supplies or PDU’s and more efficient means of cooling server compute resources than from traditional internal server fans. This is the constant pursuit of corporations looking at new ways to improving efficiency and gaining a competitive advantage. A new way to optimize power consumption and improve cooling is a complete redesign of the traditional server rack. Extracting internal server power supplies and server fans and centralizing these within the rack aims to achieve this goal. This type of design achieves an entirely new low power target by utilizing centralized, high efficiency PDU’s that power all servers within the rack. Cooling is improved by also utilizing large efficient rack based fans for airflow to all servers. Also, opening up the server design is to allow greater airflow across server components for improved cooling. This centralized power supply breaks through the traditional server power limits. Rack based PDU’s can adjust the power efficiency to a more optimum point. Combine this with the use of online + offline modes within one single power supply. Cold backup makes data center power to achieve optimal power efficiency. In addition, unifying the mechanical structure and thermal definitions within the rack solution for server cooling and PSU information allows IT to collect all server power and thermal information centrally for improved ease in analyzing and processing.

2021 ◽  
Vol 2095 (1) ◽  
pp. 012001
Author(s):  
Tao Wu

Abstract Double power supplies are widely used in analog integrated circuits for the sake of power export and dynamic ranges. By contrast, single power supply and the ground line are regular in digital integrated circuits so far. In this paper, it is shown that double power supplies with cross-zero clocks help decrease the power consumption and noises in digital integrated circuits. They are firstly explained in frequency domain and then by a three-level energy system.


2012 ◽  
Vol 13 (03n04) ◽  
pp. 1250010
Author(s):  
SHAOSHAN LIU ◽  
WON W. RO ◽  
CHEN LIU ◽  
ALFREDO CRISTOBAL-SALAS ◽  
CHRISTOPHE CÉRIN ◽  
...  

The computer industry is moving towards two extremes: extremely high-performance high-throughput cloud computing, and low-power mobile computing. Cloud computing, while providing high performance, is very costly. Google and Microsoft Bing spend billions of dollars each year to maintain their server farms, mainly due to the high power bills. On the other hand, mobile computing is under a very tight energy budget, but yet the end users demand ever increasing performance on these devices. This trend indicates that conventional architectures are not able to deliver high-performance and low power consumption at the same time, and we need a new architecture model to address the needs of both extremes. In this paper, we thus introduce our Extremely Heterogeneous Architecture (EHA) project: EHA is a novel architecture that incorporates both general-purpose and specialized cores on the same chip. The general-purpose cores take care of generic control and computation. On the other hand, the specialized cores, including GPU, hard accelerators (ASIC accelerators), and soft accelerators (FPGAs), are designed for accelerating frequently used or heavy weight applications. When acceleration is not needed, the specialized cores are turned off to reduce power consumption. We demonstrate that EHA is able to improve performance through acceleration, and at the same time reduce power consumption. Since EHA is a heterogeneous architecture, it is suitable for accelerating heterogeneous workloads on the same chip. For example, data centers and clouds provide many services, including media streaming, searching, indexing, scientific computations. The ultimate goal of the EHA project is two-fold: first, to design a chip that is able to run different cloud services on it, and through this design, we would be able to greatly reduce the cost, both recurring and non-recurring, of data centers\clouds; second, to design a light-weight EHA that runs on mobile devices, providing end users with improved experience even under tight battery budget constraints.


Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Author(s):  
GOPALA KRISHNA.M ◽  
UMA SANKAR.CH ◽  
NEELIMA. S ◽  
KOTESWARA RAO.P

In this paper, presents circuit design of a low-power delay buffer. The proposed delay buffer uses several new techniques to reduce its power consumption. Since delay buffers are accessed sequentially, it adopts a ring-counter addressing scheme. In the ring counter, double-edge-triggered (DET) flip-flops are utilized to reduce the operating frequency by half and the C-element gated-clock strategy is proposed. Both total transistor count and the number of clocked transistors are significantly reduced to improve power consumption and speed in the flip-flop. The number of transistors is reduced by 56%-60% and the Area-Speed-Power product is reduced by 56%-63% compared to other double edge triggered flip-flops. This design is suitable for high-speed, low-power CMOS VLSI design applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Sumitra Singar ◽  
N. K. Joshi ◽  
P. K. Ghosh

Dual edge triggered (DET) techniques are most liked choice for the researchers in the field of digital VLSI design because of its high-performance and low-power consumption standard. Dual edge triggered techniques give the similar throughput at half of the clock frequency as compared to the single edge triggered (SET) techniques. Dual edge triggered techniques can reduce the 50% power consumption and increase the total system power savings. The low-power glitch-free novel dual edge triggered flip-flop (DET-FF) design is proposed in this paper. Still now, existing DET-FF designs are constructed by using either C-element circuit or 1P-2N structure or 2P-1N structure, but the proposed novel design is designed by using the combination of C-element circuit and 2P-1N structure. In this design, if any glitch affects one of the structures, then it is nullified by the other structure. To control the input loading, the two circuits are merged to share the transistors connected to the input. In the proposed design, we have used an internal dual feedback structure. The proposed design reduces the delay and power consumption and increases the speed and efficiency of the system.


Author(s):  
Mário Pereira Vestias

High-performance reconfigurable computing systems integrate reconfigurable technology in the computing architecture to improve performance. Besides performance, reconfigurable hardware devices also achieve lower power consumption compared to general-purpose processors. Better performance and lower power consumption could be achieved using application-specific integrated circuit (ASIC) technology. However, ASICs are not reconfigurable, turning them application specific. Reconfigurable logic becomes a major advantage when hardware flexibility permits to speed up whatever the application with the same hardware module. The first and most common devices utilized for reconfigurable computing are fine-grained FPGAs with a large hardware flexibility. To reduce the performance and area overhead associated with the reconfigurability, coarse-grained reconfigurable solutions has been proposed as a way to achieve better performance and lower power consumption. In this chapter, the authors provide a description of reconfigurable hardware for high-performance computing.


Sign in / Sign up

Export Citation Format

Share Document