Two-dimensional ISAR imaging using full polarisation and super-resolution processing techniques

1998 ◽  
Vol 145 (4) ◽  
pp. 240 ◽  
Author(s):  
K.-T. Kim ◽  
S.-W. Kim ◽  
H.-T. Kim
Author(s):  
U. Aebi ◽  
L.E. Buhle ◽  
W.E. Fowler

Many important supramolecular structures such as filaments, microtubules, virus capsids and certain membrane proteins and bacterial cell walls exist as ordered polymers or two-dimensional crystalline arrays in vivo. In several instances it has been possible to induce soluble proteins to form ordered polymers or two-dimensional crystalline arrays in vitro. In both cases a combination of electron microscopy of negatively stained specimens with analog or digital image processing techniques has proven extremely useful for elucidating the molecular and supramolecular organization of the constituent proteins. However from the reconstructed stain exclusion patterns it is often difficult to identify distinct stain excluding regions with specific protein subunits. To this end it has been demonstrated that in some cases this ambiguity can be resolved by a combination of stoichiometric labeling of the ordered structures with subunit-specific antibody fragments (e.g. Fab) and image processing of the electron micrographs recorded from labeled and unlabeled structures.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liliana Barbieri ◽  
Huw Colin-York ◽  
Kseniya Korobchevskaya ◽  
Di Li ◽  
Deanna L. Wolfson ◽  
...  

AbstractQuantifying small, rapidly evolving forces generated by cells is a major challenge for the understanding of biomechanics and mechanobiology in health and disease. Traction force microscopy remains one of the most broadly applied force probing technologies but typically restricts itself to slow events over seconds and micron-scale displacements. Here, we improve >2-fold spatially and >10-fold temporally the resolution of planar cellular force probing compared to its related conventional modalities by combining fast two-dimensional total internal reflection fluorescence super-resolution structured illumination microscopy and traction force microscopy. This live-cell 2D TIRF-SIM-TFM methodology offers a combination of spatio-temporal resolution enhancement relevant to forces on the nano- and sub-second scales, opening up new aspects of mechanobiology to analysis.


2021 ◽  
Author(s):  
Mingbo Chi ◽  
Xinxin Han ◽  
Yang Xu ◽  
Huaming Xing ◽  
Yongshun Liu ◽  
...  

Fractals ◽  
2006 ◽  
Vol 14 (01) ◽  
pp. 71-76 ◽  
Author(s):  
SANGRAK KIM

This paper describes fractal behaviors in a soccer game according to the player's position. It is quite important for us to characterize the fractal motion behaviors of the objects during the game. We obtained two-dimensional coordinates of the objects using standard video processing techniques from a computer soccer game. We calculated values of regularization dimensions of the time series to characterize their fractal behaviors. To see positional dependence, we averaged individual player's values over the same position in the same team. When a team is one-sidedly experiencing a severe attack, its defenders have higher fractal dimensions than those of the opponent's corresponding players. We propose a new measure of relative dominance in attack against the opponent team.


1988 ◽  
Vol 25 (7) ◽  
pp. 1128-1131 ◽  
Author(s):  
J. R. Parker

Studies of thin sections of reservoir rock have been conducted for some time with the goal of understanding flow behavior and estimating physical properties. These sections are essentially two dimensional, but it has always been assumed that the results obtained can be extrapolated to the third dimension. Computer image-processing techniques are often used in this sort of analysis because of the large amounts of data contained in a single digitized section image. One of the methods used to process these images is erosion–dilation, wherein layers of each pore are stripped off (erosion) and then replaced (dilation). This results in a smoothing of the pore perimeters and can be used to estimate pore radii, volume, and roughness. Because of the size of each image, erosion–dilation of images of the pore complex of reservoir rocks is a time-consuming process. A new method called global erosion is much faster, with no increase in memory requirement or decrease in accuracy. This should permit the processing of larger images or a greater number of small images than does the standard method.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 474
Author(s):  
K S. R. Radhika ◽  
C V. Rao ◽  
V Kamakshi Prasad

Image acquisition in a wider swath, cannot assess the best spatial resolution (SR) and temporal resolution (TR) simultaneously, due to inherent limitations of space borne sensors. But any of the information extraction from remote sensed (RS) images demands the above characteristics. As this is not possible onboard, suitable ground processing techniques need to be evolved to realise the requirements through advanced image processing techniques. The proposed work deals with processing of two onboard sensor data viz., Resourcesat-1 (RS1): LISS-III, which has medium swath combined with AWiFS, which has wider swath data to provide high spatial and temporal resolution at the same instant. LISS-III at 23m and 24 days, AWiFS at 56m and 5 days spatial and temporal revisits acquire the data at different swaths. In the process of acquisition at the same time, the 140km swath of LISS-III coincides at the exact centre line 740km swath of AWiFS. If the non-overlapping area of AWiFS has same features of earth’s surface as of LISS-III overlapping area, it then provides a way to increase the SR of AWiFS to SR of LISS-III in the same non-overlapping area. Using this knowledge, a novel processing technique Fast One Pair Learning and Prediction (FOPLP) is developed in which time is optimized against the existing methods. FOPLP improves the SR of LISS-III in non-overlapping area using technique Single Image Super Resolution (SISR) with Non Sub sampled Contourlet Transforms (NSCT) method and is applied on different sets of images. The proposed technique resulting into an image having TR of 5 days, 740km swath at SR of 23m. Results have shown the strength of the proposed method in terms of computation time and prediction accuracy assessment.  


2019 ◽  
Vol 11 (11) ◽  
pp. 1288 ◽  
Author(s):  
Hossein Aghababaee ◽  
Giampaolo Ferraioli ◽  
Laurent Ferro-Famil ◽  
Gilda Schirinzi ◽  
Yue Huang

In the frame of polarimetric synthetic aperture radar (SAR) tomography, full-ranks reconstruction framework has been recognized as a significant technique for fully characterization of superimposed scatterers in a resolution cell. The technique, mainly is characterized by the advantages of polarimetric scattering pattern reconstruction, allows physical feature extraction of the scatterers. In this paper, to overcome the limitations of conventional full-rank tomographic techniques in natural environments, a polarimetric estimator with advantages of super-resolution imaging is proposed. Under the frame of compressive sensing (CS) and sparsity based reconstruction, the profile of second order polarimetric coherence matrix T is recovered. Once the polarimetric coherence matrices of the scatterers are available, the physical features can be extracted using classical polarimetric processing techniques. The objective of this study is to evaluate the performance of the proposed full-rank polarimetric reconstruction by means of conventional three-component decomposition of T, and focusing on the consistency of vertical resolution and polarimetric scattering pattern of the scatterers. The outcomes from simulated and two different real data sets confirm that significant improvement can be achieved in the reconstruction quality with respect to conventional approaches.


Sign in / Sign up

Export Citation Format

Share Document