A survey on the polytopic Takagi-Sugeno approach: application to the inverted pendulum

Author(s):  
Riadh Hmidi ◽  
Ali Ben Brahim ◽  
Slim Dhahri ◽  
Fayçal Ben Hmida ◽  
Anis Sellami

This paper proposes fault-tolerant control design for uncertain nonlinear systems described under Takagi-Sugeno fuzzy systems with local nonlinear models that satisfy the Lipschitz condition. First, by transforming sensor faults as ‘pseudo-actuator’ faults, an adaptive sliding mode observer is designed in order to simultaneously estimate system states, actuator and sensor faults despite the presence of norm-bounded uncertainties. Second, an adaptive sliding mode controller is suggested to provide a solution to stabilize the closed-loop system, even in the event of simultaneous occurrence of faults in actuators and sensors. Next, the main objective of the fault-tolerant control strategy is to compensate for the effects of fault based on the feedback information. Therefore, using the LMI optimization method, sufficient conditions are developed with [Formula: see text] to calculate the gains of the observer and the controller. Then, particular attention is paid to the simultaneous maximization, by convex multi-objective optimization, of the Lipschitz nonlinear constant in Takagi-Sugeno fuzzy modelling and uncertainties attenuation level. The results of the simulation illustrate the effectiveness of our fault-tolerant control approach using a nonlinear inverted pendulum with a cart system.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Reda El Abbadi ◽  
Hicham Jamouli

This article investigates the stabilization problem of a nonlinear networked control system (NCS) exposed to a replay attack. A new mathematical model of the replay attack is proposed. The resulting closed-loop system is defined as a discrete-time Markovian jump linear system (MJLS). Employing the Lyapunov–Krasovskii functional, a sufficient condition for stochastic stability is given in the form of linear matrix inequalities (LMIs). The control law can be obtained by solving these LMIs. Finally, a simulation of an inverted pendulum (IP) with Matlab is developed to illustrate our controller’s efficiency.


2018 ◽  
Vol 41 (6) ◽  
pp. 1676-1685 ◽  
Author(s):  
Mohammad Tehrani ◽  
Nader Nariman-zadeh ◽  
Mojtaba Masoumnezhad

In this paper, a new hybrid unscented Kalman (UKF) and unscented [Formula: see text](U[Formula: see text]F) filter is presented that can adaptively adjust its performance better than that of either UKF and/or U[Formula: see text], accordingly. In this way, two Takagi-Sugeno-Kang (TSK) fuzzy logic systems are presented to adjust automatically some weights that combine those UK and U[Formula: see text] filters, independent of the dynamics of the problem. Such adaptive fuzzy hybrid unscented Kalman/[Formula: see text] filter (AFUK[Formula: see text]) is based on the combination of gain, a priori state estimation, and a priori measurement estimation. The simulation results of an inverted pendulum and a re-entry vehicle tracking problem clearly demonstrate robust and better performance of this new AFUK[Formula: see text] filter in comparison with those of both UKF and U[Formula: see text]F, appropriately. It is shown that, therefore, the new presented AFUK[Formula: see text] filter can simply eliminate the need for either UKF or U[Formula: see text] F effectively in the presence of Gaussian and/or non-Gaussian noises.


Robotica ◽  
2005 ◽  
Vol 23 (6) ◽  
pp. 785-788 ◽  
Author(s):  
Hosein Marzi

This paper presents a design methodology to stabilize a class of multi-variant nonlinear system after a high disturbance occurs. It investigates application of Takagi-Sugeno type fuzzy controller (T-S-FC) to an inverted pendulum mechanism, actuated by an armature-controlled DC electrical motor.Fuzzy controllers use heuristic information in developing design methodologies for control of non-linear dynamic systems. This approach eliminates the need for comprehensive knowledge and mathematical modeling of the system, and in cases of more complex systems, approximation and simplifications in order to achieve feasible mathematical model is not required.The paper presents the stages of development of the Fuzzy Controller for an inverted pendulum by developing a two-input, Mamdani type system. It evaluates the performance of the system. Then a four-input T-S-FC type is developed. The research compares performances of each controller and presents the result of tests. A model for a DC motor is developed in this study, in order to measure the effect of time delays and response time caused by inherent properties of the physical system. The final part will demonstrate the complete operational system with the DC electrical motor included in the test system.


Sign in / Sign up

Export Citation Format

Share Document