scholarly journals Development of a current source resonant inverter for high current MHz induction heating

2021 ◽  
Author(s):  
Thore S. Aunsborg ◽  
Sune Bro Duun ◽  
Stig Munk‐Nielsen ◽  
Christian Uhrenfeldt
2021 ◽  
Vol 2064 (1) ◽  
pp. 012016
Author(s):  
A P Artyomov ◽  
A G Rousskikh ◽  
A S Zhigalin ◽  
I A Rousskikh ◽  
A G Tyukavkin ◽  
...  

Abstract The aim of this work was to obtain magnitude quantitative estimates of the “closed-type” plasma gun aluminum electrodes erosion that occurs during the course of a high-current vacuum arc discharge. The experimental setup consisted of two current generators. The first generator capable of generating a current with an amplitude of up to 450 kA and a rise time of 500 ns was used as a current source for a plasma gun. The second one was used as an X-ray radiograph to visualize the object under study in the soft X-ray range (hv ≈ 0.5–3 keV). Quantitative distributions of the plasma linear mass are obtained both along the radius and along the length of the jet at different times. It was shown that the erosion properties of the electrode material are related to the current characteristics of the arc discharge current.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4545
Author(s):  
Yongseung Oh ◽  
Jaeeul Yeon ◽  
Jayoon Kang ◽  
Ilya Galkin ◽  
Wonsoek Oh ◽  
...  

Single-ended (SE) resonant inverters are widely used as power converters for high-pressure rice cooker induction, with 1200 V insulated-gate bipolar transistors (IGBTs) being used as switching devices for kW-class products. When voltage fluctuations occur at the input stage of an SE resonant inverter, the resonant voltage applied to the IGBT can be directly affected, potentially exceeding the breakdown voltage of the IGBT, resulting in its failure. Consequently, the resonant voltage should be limited to below a safety threshold—hardware resonant voltage limiting methods are generally used to do so. This paper proposes a sensorless resonant voltage control method that limits the increase in the resonant voltage caused by overvoltage or supply voltage fluctuations. By calculating and predicting the resonance voltage through the analysis of the resonance circuit, the resonance voltage is controlled not to exceed the breakdown voltage of the IGBT. The experimental results of a 1.35 kW SE resonant inverter for a high-pressure induction heating rice cooker were used to verify the validity of the proposed sensorless resonant voltage limiting method.


Sign in / Sign up

Export Citation Format

Share Document