Why metalworking fluids don't have to cause problems

1984 ◽  
Vol 63 (7) ◽  
pp. 35
Author(s):  
Roger Williams
Keyword(s):  
Author(s):  
Andres F. Clarens ◽  
Ye-Eun Park ◽  
Jacob Temme ◽  
Kim Hayes ◽  
Fu Zhao ◽  
...  

Carbon Dioxide is an industrial byproduct that has been proposed as an alternative metalworking fluid (MWF) carrier with lower environmental impacts and better cooling potential than existing MWFs. This paper investigates the heat removal and tool life effects of rapidly expanding supercritical CO2 (scCO2)-based MWFs relative to MWFs delivered as a flood of semi-synthetic emulsion or as minimum quantity lubrication (MQL) sprays. When cutting both compacted graphite iron (CGI) and titanium, tool wear was most effectively controlled using the scCO2-based MWF compared with the other MWFs. Analysis in this paper suggests that the performance benefit imparted by rapidly expanding scCO2 appears to be related to both the cooling potential and penetration of the sprays into the cutting zone. High-pressure gas sprays have lower viscosity and higher velocity than conventional MWFs. An experiment in which the spray direction was varied clearly demonstrated the importance of spray penetration in tool wear suppression. The type of gas spray is also a significant factor in tool wear suppression. For instance, a spray of N2 delivered under similar conditions to CO2 effectively reduced tool wear relative to water based fluids, but not as much as CO2. This result is particularly relevant for MQL sprays which are shown to not cool nearly as effectively as scCO2 MWFs. These results inform development of scCO2-based MWFs in other machining operations, and provide insight into the optimization of scCO2 MWF delivery.


2010 ◽  
Vol 108 (2) ◽  
pp. 437-449 ◽  
Author(s):  
Y. Gilbert ◽  
M. Veillette ◽  
C. Duchaine
Keyword(s):  

2011 ◽  
Vol 78 (1) ◽  
pp. 34-41 ◽  
Author(s):  
Jean-Benjamin Murat ◽  
Frédéric Grenouillet ◽  
Gabriel Reboux ◽  
Emmanuelle Penven ◽  
Adam Batchili ◽  
...  

ABSTRACTHypersensitivity pneumonitis, also known as “machine operator's lung” (MOL), has been related to microorganisms growing in metalworking fluids (MWFs), especiallyMycobacterium immunogenum. We aimed to (i) describe the microbiological contamination of MWFs and (ii) look for chemical, physical, and environmental parameters associated with variations in microbiological profiles. We microbiologically analyzed 180 MWF samples from nonautomotive plants (e.g., screw-machining or metal-cutting plants) in the Franche-Comté region in eastern France and 165 samples from three French automotive plants in which cases of MOL had been proven. Our results revealed two types of microbial biomes: the first was from the nonautomotive industry, showed predominantly Gram-negative rods (GNR), and was associated with a low risk of MOL, and the second came from the automotive industry that was affected by cases of MOL and showed predominantly Gram-positive rods (GPR). Traces ofM. immunogenumwere sporadically detected in the first type, while it was highly prevalent in the automotive sector, with up to 38% of samples testing positive. The use of chromium, nickel, or iron was associated with growth of Gram-negative rods; conversely, growth of Gram-positive rods was associated with the absence of these metals. Synthetic MWFs were more frequently sterile than emulsions. Vegetable oil-based emulsions were associated with GNR, while mineral ones were associated with GPR. Our results suggest that metal types and the nature of MWF play a part in MWF contamination, and this work shall be followed by furtherin vitrosimulation experiments on the kinetics of microbial populations, focusing on the phenomena of inhibition and synergy.


Sign in / Sign up

Export Citation Format

Share Document