scholarly journals Protoplanetary disk evolution and stellar parameters of T Tauri binaries in Chamaeleon I

2013 ◽  
Vol 554 ◽  
pp. A43 ◽  
Author(s):  
S. Daemgen ◽  
M. G. Petr-Gotzens ◽  
S. Correia ◽  
P. S. Teixeira ◽  
W. Brandner ◽  
...  
2018 ◽  
Vol 853 (2) ◽  
pp. 112 ◽  
Author(s):  
F. Fraschetti ◽  
J. J. Drake ◽  
O. Cohen ◽  
C. Garraffo

2020 ◽  
Vol 635 ◽  
pp. A53 ◽  
Author(s):  
R. Franz ◽  
G. Picogna ◽  
B. Ercolano ◽  
T. Birnstiel

Context. X-ray- and extreme ultraviolet (XEUV) driven photoevaporative winds acting on protoplanetary disks around young T Tauri stars may crucially impact disk evolution, affecting both gas and dust distributions. Aims. We investigate the dust entrainment in XEUV-driven photoevaporative winds and compare our results to existing magnetohydrodynamic and EUV-only models. Methods. We used a 2D hydrodynamical gas model of a protoplanetary disk irradiated by both X-ray and EUV spectra from a central T Tauri star to trace the motion of passive Lagrangian dust grains of various sizes. The trajectories were modelled starting at the disk surface in order to investigate dust entrainment in the wind. Results. For an X-ray luminosity of LX = 2 × 1030 erg s−1 emitted by a M* = 0.7 M⊙ star, corresponding to a wind mass-loss rate of Ṁw ≃ 2.6 × 10−8 M⊙ yr−1, we find dust entrainment for sizes a0 ≲ 11 μm (9 μm) from the inner 25 AU (120 AU). This is an enhancement over dust entrainment in less vigorous EUV-driven winds with Ṁw ≃ 10−10 M⊙ yr−1. Our numerical model also shows deviations of dust grain trajectories from the gas streamlines even for μm-sized particles. In addition, we find a correlation between the size of the entrained grains and the maximum height they reach in the outflow. Conclusions. X-ray-driven photoevaporative winds are expected to be dust-rich if small grains are present in the disk atmosphere.


2011 ◽  
Vol 7 (S282) ◽  
pp. 452-453 ◽  
Author(s):  
Sebastian Daemgen ◽  
Monika G. Petr-Gotzens ◽  
Serge Correia

AbstractIn order to trace the role of binarity for disk evolution and hence planet formation, we started the currently largest spatially resolved near-infrared photometric and spectroscopic study of the inner dust and accretion disks of the individual components of 27 visual, 100–400 AU binaries in the Orion Nebula Cluster (ONC). We study the frequency of Brackett-γ (2.165μm) emitters to assess the frequency of accretion disk-bearing stars among the binaries of the ONC: only 34±9% of the binary components show signs of accretion and, hence, the presence of gaseous inner disks—less than the fraction of gas accretion disks among single stars of the ONC of ~50%. Additionally, we find a significant difference between binaries above and below 200 AU separation: no close systems with only one accreting component are found. The results suggest shortened disk lifetimes as well as synchronized disk evolution.


2018 ◽  
Vol 614 ◽  
pp. A98 ◽  
Author(s):  
Eduard I. Vorobyov ◽  
Vitaly Akimkin ◽  
Olga Stoyanovskaya ◽  
Yaroslav Pavlyuchenkov ◽  
Hauyu Baobab Liu

Context. Aims. The long-term evolution of a circumstellar disk starting from its formation and ending in the T Tauri phase was simulated numerically with the purpose of studying the evolution of dust in the disk with distinct values of the viscous α-parameter and dust fragmentation velocity vfrag. Methods. We solved numerical hydrodynamics equations in the thin-disk limit, which were modified to include a dust component consisting of two parts: sub-micron-sized dust, and grown dust with a maximum radius ar. The former is strictly coupled to the gas, while the latter interacts with the gas through friction. Dust growth, dust self-gravity, and the conversion of small to grown dust were also considered. Results. We found that the process of dust growth that is known for the older protoplanetary phase also holds for the embedded phase of the disk evolution. The dust growth efficiency depends on the radial distance from the star – ar is largest in the inner disk and gradually declines with radial distance. In the inner disk, ar is limited by the dust fragmentation barrier. The process of small-to-grown dust conversion is very fast once the disk is formed. The total mass of the grown dust in the disk (beyond 1 AU) reaches tens or even hundreds of Earth masses as soon as in the embedded phase of star formation, and an even greater amount of grown dust drifts in the inner, unresolved 1 AU of the disk. Dust does not usually grow to radii greater than a few cm. A notable exception are models with α ≤ 10−3, in which case a zone with reduced mass transport develops in the inner disk and dust can grow to meter-sized boulders in the inner 10 AU. Grown dust drifts inward and accumulates in the inner disk regions. This effect is most pronounced in the α ≤ 10−3 models, where several hundreds of Earth masses can be accumulated in a narrow region of several AU from the star by the end of embedded phase. The efficiency of grown dust accumulation in spiral arms is stronger near corotation where the azimuthal velocity of dust grains is closest to the local velocity of the spiral pattern. In the framework of the adopted dust growth model, the efficiency of small-to-grown dust conversion was found to increase for lower values of α and vfrag.


2021 ◽  
Vol 921 (2) ◽  
pp. 182
Author(s):  
Anneliese M. Rilinger ◽  
Catherine C. Espaillat

Abstract We present the largest sample of brown dwarf (BD) protoplanetary disk spectral energy distributions modeled to date. We compile 49 objects with ALMA observations from four star-forming regions: ρ Ophiuchus, Taurus, Lupus, and Upper Scorpius. Studying multiple regions with various ages enables us to probe disk evolution over time. Specifically, from our models, we obtain values for dust grain sizes, dust settling, and disk mass; we compare how each of these parameters vary between the regions. We find that disk mass decreases with age. We also find evidence of disk evolution (i.e., grain growth and significant dust settling) in all four regions, indicating that planet formation and disk evolution may begin to occur at earlier stages. We generally find that these disks contain too little mass to form planetary companions, though we cannot rule out that planet formation may have already occurred. Finally, we examine the disk mass–host mass relationship and find that BD disks are largely consistent with previously determined relationships for disks around T Tauri stars.


2021 ◽  
Vol 653 ◽  
pp. L5
Author(s):  
N. T. Phuong ◽  
A. Dutrey ◽  
E. Chapillon ◽  
S. Guilloteau ◽  
J. Bary ◽  
...  

Context. Molecular line surveys are among the main tools to probe the structure and physical conditions in protoplanetary disks (PPDs), the birthplace of planets. The large radial and vertical temperature as well as density gradients in these PPDs lead to a complex chemical composition, making chemistry an important step to understand the variety of planetary systems. Aims. We aimed to study the chemical content of the protoplanetary disk surrounding GG Tau A, a well-known triple T Tauri system. Methods. We used NOEMA with the new correlator PolyFix to observe rotational lines at ∼2.6 to 4 mm from a few dozen molecules. We analysed the data with a radiative transfer code to derive molecular densities and the abundance relative to 13CO, which we compare to those of the TMC1 cloud and LkCa 15 disk. Results. We report the first detection of CCS in PPDs. We also marginally detect OCS and find 16 other molecules in the GG Tauri outer disk. Ten of them had been found previously, while seven others (13CN, N2H+, HNC, DNC, HC3N, CCS, and C34S) are new detections in this disk. Conclusions. The analysis confirms that sulphur chemistry is not yet properly understood. The D/H ratio, derived from DCO+/HCO+, DCN/HCN, and DNC/HNC ratios, points towards a low temperature chemistry. The detection of the rare species CCS confirms that GG Tau is a good laboratory to study the protoplanetary disk chemistry, thanks to its large disk size and mass.


2009 ◽  
Vol 699 (2) ◽  
pp. 1454-1472 ◽  
Author(s):  
Konstantin V. Getman ◽  
Eric D. Feigelson ◽  
Kevin L. Luhman ◽  
Aurora Sicilia-Aguilar ◽  
Junfeng Wang ◽  
...  

2012 ◽  
Vol 762 (2) ◽  
pp. 100 ◽  
Author(s):  
Lucas A. Cieza ◽  
Johan Olofsson ◽  
Paul M. Harvey ◽  
Neal J. Evans ◽  
Joan Najita ◽  
...  

2013 ◽  
Vol 8 (S299) ◽  
pp. 374-375
Author(s):  
Kévin Baillié ◽  
Sébastien Charnoz

AbstractBased on a self-consistent coupling between protoplanetary disk thermodynamics, photosphere geometry and dynamics we designed a 1D-hydrodynamical numerical model for the spreading of the disks as a function of the star characteristics. We found that the evolution timescale increases for more massive or for a steeper surface density disk, and decreases for bigger stars or less turbulent disks. We found a strong dependency of the mass accretion rate versus the disk mass and a weaker dependency versus the star mass. Coupled with observed similar conclusions, we derived that the disk mass is scaling as M*1.6.


2009 ◽  
Vol 697 (2) ◽  
pp. 1305-1315 ◽  
Author(s):  
Stephanie R. Cortes ◽  
Michael R. Meyer ◽  
John M. Carpenter ◽  
Ilaria Pascucci ◽  
Glenn Schneider ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document