scholarly journals The curious case of the companion: evidence for cold accretion onto a dwarf satellite near the isolated elliptical NGC 7796

2018 ◽  
Vol 620 ◽  
pp. A133 ◽  
Author(s):  
T. Richtler ◽  
M. Hilker ◽  
K. Voggel ◽  
T. H. Puzia ◽  
R. Salinas ◽  
...  

Context. The isolated elliptical (IE) NGC 7796 is accompanied by an interesting early-type dwarf galaxy, named NGC 7796-DW1. It exhibits a tidal tail, very boxy isophotes, and multiple nuclei or regions (A, B, and C) that are bluer than the bulk population of the galaxy, indicating a younger age. These properties are suggestive of a dwarf–dwarf merger remnant. Aims. Dwarf–dwarf mergers are poorly understood, but may have a high importance for dwarf galaxy evolution. We want to investigate the properties of the dwarf galaxy and its components to find more evidence for a dwarf–dwarf merger or for alternative formation scenarios. Methods. We use the Multi-Unit Spectroscopic Explorer (MUSE) at the VLT to investigate NGC 7796-DW1. We extract characteristic spectra to which we apply the STARLIGHT population synthesis software to obtain ages and metallicities of the various population components of the galaxy. This permits us to isolate the emission lines for which fluxes and flux ratios can be measured and to which strong-line diagnostic tools can be applied. Results. The galaxy’s main body is old and metal-poor. A surprising result is the extended line emission in the galaxy, forming a ring-like structure with a projected diameter of 2.2 kpc. The line ratios fall into the regime of HII-regions, although OB-stellar populations cannot be identified by spectral signatures. The low Hα surface brightnesses indicate unresolved star-forming substructures, which means that broad-band colours are not reliable age or metallicity indicators. Nucleus A is a relatively old (7 Gyr or older) and metalpoor super star cluster, most probably the nucleus of the dwarf, now displaced. The star-forming regions B and C show younger and distinctly more metal-rich components. The emission line ratios of regions B and C indicate an almost solar oxygen abundance, if compared with radiation models of HII regions. Oxygen abundances from empirical calibrations point to only half-solar. The ring-like Hα-structure does not exhibit signs of rotation or orbital movements. Conclusions. NGC 7796-DW1 occupies a particular role in the group of transition-type galaxies with respect to its origin and current evolutionary state, being the companion of an IE. The dwarf–dwarf merger scenario is excluded because of the missing metal-rich merger component. A viable alternative is gas accretion from a reservoir of cold, metal-rich gas. NGC 7796 has to provide this gas within its X-ray bright halo. As illustrated by NGC 7796-DW1, cold accretion may be a general solution to the problem of extended star formation histories in transition dwarf galaxies.

2020 ◽  
Vol 499 (4) ◽  
pp. 4940-4960
Author(s):  
Henry R M Zovaro ◽  
Robert Sharp ◽  
Nicole P H Nesvadba ◽  
Lisa Kewley ◽  
Ralph Sutherland ◽  
...  

ABSTRACT Local examples of jet-induced star formation lend valuable insight into its significance in galaxy evolution and can provide important observational constraints for theoretical models of positive feedback. Using optical integral field spectroscopy, we present an analysis of the ISM conditions in Minkowski’s object (z = 0.0189), a peculiar star-forming dwarf galaxy located in the path of a radio jet from the galaxy NGC 541. Full spectral fitting with ppxf indicates that Minkowski’s object primarily consists of a young stellar population $\sim \! 10\, \rm Myr$ old, confirming that the bulk of the object’s stellar mass formed during a recent jet interaction. Minkowski’s object exhibits line ratios largely consistent with star formation, although there is evidence for a low level ($\lesssim \! 15 \, \rm per \, cent$) of contamination from a non-stellar ionizing source. Strong-line diagnostics reveal a significant variation in the gas-phase metallicity within the object, with $\log \left(\rm O / H \right) + 12$ varying by $\sim \! 0.5\, \rm dex$, which cannot be explained by in-situ star formation, an enriched outflow from the jet, or enrichment of gas in the stellar bridge between NGC 541 and NGC 545/547. We hypothesize that Minkowski’s object either (i) was formed as a result of jet-induced star formation in pre-existing gas clumps in the stellar bridge, or (ii) is a gas-rich dwarf galaxy that is experiencing an elevation in its star formation rate due to a jet interaction, and will eventually redden and fade, becoming an ultradiffuse galaxy as it is processed by the cluster.


2018 ◽  
Vol 614 ◽  
pp. A130 ◽  
Author(s):  
K. George ◽  
P Joseph ◽  
P. Côté ◽  
S. K. Ghosh ◽  
J. B. Hutchings ◽  
...  

Context. The tidal tails of post-merger galaxies exhibit ongoing star formation far from their disks. The study of such systems can be useful for our understanding of gas condensation in diverse environments. Aims. The ongoing star formation in the tidal tails of post-merger galaxies can be directly studied from ultraviolet (UV) imaging observations. Methods. The post merger galaxy NGC7252 (“Atoms-for-Peace” galaxy) is observed with the Astrosat UV imaging telescope (UVIT) in broadband NUV and FUV filters to isolate the star-forming regions in the tidal tails and study the spatial variation in star formation rates. Results. Based on ultraviolet imaging observations, we discuss star-forming regions of ages <200 Myr in the tidal tails. We measure star formation rates in these regions and in the main body of the galaxy. The integrated star formation rate (SFR) of NGC7252 (i.e., that in the galaxy and tidal tails combined) without correcting for extinction is found to be 0.81 ± 0.01 M⊙ yr−1. We show that the integrated SFR can change by an order of magnitude if the extinction correction used in SFR derived from other proxies are taken into consideration. The star formation rates in the associated tidal dwarf galaxies (NGC7252E, SFR = 0.02 M⊙ yr−1 and NGC7252NW, SFR = 0.03 M⊙ yr−1) are typical of dwarf galaxies in the local Universe. The spatial resolution of the UV images reveals a gradient in star formation within the tidal dwarf galaxy. The star formation rates show a dependence on the distance from the centre of the galaxy. This can be due to the different initial conditions responsible for the triggering of star formation in the gas reservoir that was expelled during the recent merger in NGC7252.


2020 ◽  
Vol 634 ◽  
pp. A102 ◽  
Author(s):  
I. Proshina ◽  
O. Sil’chenko ◽  
A. Moiseev

Aims. Although S0 galaxies are often thought to be “red and dead”, they frequently demonstrate star formation organised in ring structures. We try to clarify the nature of this phenomenon and its difference from star formation in spiral galaxies. Here we study the moderate-luminosity nearby S0 galaxy, NGC 4513. Methods. By applying long-slit spectroscopy along the major axis of NGC 4513, we measured gas and star kinematics, Lick indices for the main body of the galaxy, and strong emission-line flux ratios in the ring. After inspecting the gas excitation in the ring using the line ratios diagnostic diagrams and showing that it is ionised by young stars, we determined the gas oxygen abundance using popular strong-line calibration methods. We estimated the star formation rate (SFR) in the outer ring using the archival Galaxy Evolution Explorer (GALEX) ultraviolet images of the galaxy. Results. The ionised gas counter-rotates the stars over the whole extension of NGC 4513 suggesting that it is being accreted from outside. The gas metallicity in the ring is slightly subsolar, [O/H] = −0.2 dex, matching the metallicity of the stellar component of the main galactic disc. However the stellar component of the ring is much more massive than can be explained by the current star formation level in the ring. We conclude that the ring of NGC 4513 is probably the result of tidal disruption of a massive gas-rich satellite, or may be the consequence of a long star-formation event provoked by gas accretion from a cosmological filament that started some 3 Gyr ago.


Author(s):  
Andrea Afruni ◽  
Filippo Fraternali ◽  
Gabriele Pezzulli

Abstract The characterization of the large amount of gas residing in the galaxy halos, the so called circumgalactic medium (CGM), is crucial to understand galaxy evolution across cosmic time. We focus here on the the cool (T ∼ 104 K) phase of this medium around star-forming galaxies in the local universe, whose properties and dynamics are poorly understood. We developed semi-analytical parametric models to describe the cool CGM as an outflow of gas clouds from the central galaxy, as a result of supernova explosions in the disc (galactic wind). The cloud motion is driven by the galaxy gravitational pull and by the interactions with the hot (T ∼ 106 K) coronal gas. Through a bayesian analysis, we compare the predictions of our models with the data of the COS-Halos and COS-GASS surveys, which provide accurate kinematic information of the cool CGM around more than 40 low-redshift star-forming galaxies, probing distances up to the galaxy virial radii. Our findings clearly show that a supernova-driven outflow model is not suitable to describe the dynamics of the cool circumgalactic gas. Indeed, to reproduce the data, we need extreme scenarios, with initial outflow velocities and mass loading factors that would lead to unphysically high energy coupling from the supernovae to the gas and with supernova efficiencies largely exceeding unity. This strongly suggests that, since the outflows cannot reproduce most of the cool gas absorbers, the latter are likely the result of cosmological inflow in the outer galaxy halos, in analogy to what we have previously found for early-type galaxies.


2001 ◽  
Vol 205 ◽  
pp. 224-227
Author(s):  
Jean L. Turner

Subarcsecond radio and infrared observations reveal a class of luminous, obscured, optically thick HII regions associated with extremely large young clusters in nearby starburst galaxies. VLA images show bright radio nebulae with ne ∼ 104 cm−3, densities characteristic of young Galactic compact HII regions. Excitation of the nebulae requires the presence of several thousand O stars within regions of 1-10 pc extent, corresponding to clusters containing 105–106 stars. The compact nebulae are also bright in the mid-infrared, and can for significant fractions of not only the total IR luminosity, but also the total bolometric luminosity, of the parent galaxies. The prototype for these “supernebulae” is the large, obscured cluster in the dwarf galaxy NGC 5253.


2011 ◽  
Vol 7 (S283) ◽  
pp. 308-309 ◽  
Author(s):  
Luciana Bianchi ◽  
Arturo Manchado ◽  
Karl Forster

AbstractGALEX (the Galaxy Evolution Explorer) has provided far-UV(1344-1786Å) and near-UV(1771-2831Å) imaging of several Planetary Nebulae (e.g., Bianchi et al. 2008, Bianchi 2012), with flux limits ~27.5 mag/sq.arcsec for objects in the Medium-deph Imaging Survey (MIS). PNe images in the GALEX broad-band UV filters include flux from both nebular line and continuum emission. We use the GALEX grism observing mode to obtain slitless spectral imaging of a sample of PNe with diameters >1′, in the near-UV. We show the first data from this program. The grism produces 2D images of the prominent UV nebular emission lines, when such lines dominate the flux. Combined with monochromatic images of diagnostic lines in the optical domain, such data help detect and interpret ionization and shock fronts, especially in faint nebular regions.


2019 ◽  
Vol 491 (3) ◽  
pp. 3672-3701 ◽  
Author(s):  
N Boardman ◽  
G Zasowski ◽  
A Seth ◽  
J Newman ◽  
B Andrews ◽  
...  

ABSTRACT The Milky Way provides an ideal laboratory to test our understanding of galaxy evolution, owing to our ability to observe our Galaxy over fine scales. However, connecting the Galaxy to the wider galaxy population remains difficult, due to the challenges posed by our internal perspective and to the different observational techniques employed. Here, we present a sample of galaxies identified as Milky Way analogues on the basis of their stellar masses and bulge-to-total ratios, observed as part of the Mapping Nearby Galaxies at Apache Point Observatory survey. We analyse the galaxies in terms of their stellar kinematics and populations as well as their ionized gas contents. We find our sample to contain generally young stellar populations in their outskirts. However, we find a wide range of stellar ages in their central regions, and we detect central active galactic nucleus-like or composite-like activity in roughly half of the sample galaxies, with the other half consisting of galaxies with central star-forming emission or emission consistent with old stars. We measure gradients in gas metallicity and stellar metallicity that are generally flatter in physical units than those measured for the Milky Way; however, we find far better agreement with the Milky Way when scaling gradients by galaxies’ disc scale lengths. From this, we argue much of the discrepancy in metallicity gradients to be due to the relative compactness of the Milky Way, with differences in observing perspective also likely to be a factor.


2004 ◽  
Vol 217 ◽  
pp. 406-411 ◽  
Author(s):  
M. E. Putman ◽  
C. Thom ◽  
B. K. Gibson ◽  
L. Staveley-Smith

The possibility of a gaseous halo stream which was stripped from the Sagittarius dwarf galaxy is presented. The total mass of the neutral hydrogen along the orbit of the Sgr dwarf in the direction of the Galactic Anti-Center is 4 − 10 × 106 M⊙ (at 36 kpc, the distance to the stellar debris in this region). Both the stellar and gaseous components have negative velocities in this part of the sky, but the gaseous component extends to higher negative velocities. We suggest this gaseous stream was stripped from the main body of the dwarf 0.2 – 0.3 Gyr ago during its current orbit after a passage through a diffuse edge of the Galactic disk with a density > 10−4 cm−3. The gas would then represent the dwarf's last source of star formation fuel and explains how the galaxy was forming stars 0.5-2 Gyr ago.


2018 ◽  
Vol 620 ◽  
pp. A29 ◽  
Author(s):  
Y. Stein ◽  
D. J. Bomans ◽  
P. Kamphuis ◽  
E. Jütte ◽  
M. Langener ◽  
...  

Context. The halos of disk galaxies form a crucial connection between the galaxy disk and the intergalactic medium. Massive stars, H II regions, or dwarf galaxies located in the halos of galaxies are potential tracers of recent accretion and/or outflows of gas, and are additional contributors to the photon field and the gas phase metallicity. Aims. We investigate the nature and origin of a star-forming dwarf galaxy candidate located in the halo of the edge-on Virgo galaxy NGC 4634 with a projected distance of 1.4 kpc and a Hα star formation rate of ∼4.7 × 10−3 M⊙ yr−1 in order to increase our understanding of these disk-halo processes. Methods. With optical long-slit spectra we measured fluxes of optical nebula emission lines to derive the oxygen abundance 12 + log(O/H) of an H II region in the disk of NGC 4634 and in the star-forming dwarf galaxy candidate. Abundances derived from optical long-slit data and from Hubble Space Telescope (HST) r-band data, Hα data, Giant Metrewave Radio Telescope (GMRT) H I data, and photometry of SDSS and GALEX data were used for further analysis. With additional probes of the luminosity–metallicity relation in the B-band from the Hα-luminosity, the H I map, and the relative velocities, we are able to constrain a possible origin of the dwarf galaxy candidate. Results. The high oxygen abundance (12 + log(O/H) ≈ 8.72) of the dwarf galaxy candidate leads to the conclusion that it was formed from pre-enriched material. Analysis of auxiliary data shows that the dwarf galaxy candidate is composed of material originating from NGC 4634. We cannot determine whether this material has been ejected tidally or through other processes, which makes the system highly interesting for follow up observations.


2017 ◽  
Vol 13 (S334) ◽  
pp. 29-33
Author(s):  
Baslio Santiago ◽  
Elmer Luque ◽  
Adriano Pieres ◽  
Anna Bárbara Queiroz

AbstractThe stellar spheroidal components of the Milky-Way contain the oldest and most metal poor of its stars. Inevitably the processes governing the early stages of Galaxy evolution are imprinted upon them. According to the currently favoured hierarchical bottom-up scenario of galaxy formation, these components, specially the Galactic halo, are the repository of most of the mass built up from accretion events in those early stages. These events are still going on today, as attested by the long stellar streams associated to the Sagittarius dwarf galaxy and several other observed tidal substructure, whose geometry, extent, and kinematics are important constraints to reconstruct the MW gravitational potential and infer its total (visible + dark) mass. In addition, the remaining system of MW satellites is expected to be a fossil record of the much larger population of Galactic building blocks that once existed and got accreted. For all these reasons, it is crucial to unravel as much of this remaining population as possible, as well as the current stellar streams that orbit within the halo. The best bet to achieve this task is to carry out wide, deep, and multi-band photometric surveys that provide homogeneous stellar samples. In this contribution, we summarize the results of several years of work towards detecting and characterizing distant MW stellar systems, star clusters and dwarf spheroidals alike, with an emphasis on the analysis of data from the Dark Energy Survey (DES). We argue that most of the volume in distance, size and luminosity space, both in the Galaxy and in the Clouds, is still unprobed. We then discuss the perspectives of exploring this outer MW volume using the current surveys, as well as other current and future surveys, such as the Large Synoptic Survey Telescope (LSST).


Sign in / Sign up

Export Citation Format

Share Document