scholarly journals IGR J17329-2731: The birth of a symbiotic X-ray binary

2018 ◽  
Vol 613 ◽  
pp. A22 ◽  
Author(s):  
E. Bozzo ◽  
A. Bahramian ◽  
C. Ferrigno ◽  
A. Sanna ◽  
J. Strader ◽  
...  

We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7-1.2+3.4 kpc. The data collected quasi-simultaneously with XMM–Newton and NuSTAR showed the presence of a modulation with a period of 6680 ± 3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption (≫1023 cm−2) and prominent emission lines at 6.4 keV, and 7.1 keV. These features are usually found in wind-fed systems, in which the emission lines result from the fluorescence of the X-rays from the accreting compact object on the surrounding stellar wind. The presence of a strong absorption line around ~21 keV in the spectrum suggests a cyclotron origin, thus allowing us to estimate the neutron star magnetic field as ~2.4 × 1012 G. All evidencethus suggests IGR J17329-2731 is a symbiotic X-ray binary. As no X-ray emission was ever observed from the location of IGR J17329-2731 by INTEGRAL (or other X-ray facilities) during the past 15 yr in orbit and considering that symbiotic X-ray binaries are known to be variable but persistent X-ray sources, we concluded that INTEGRAL caught the first detectable X-ray emission from IGR J17329-2731 when the source shined as a symbiotic X-ray binary. The Swift XRT monitoring performed up to ~3 months after the discovery of the source, showed that it maintained a relatively stable X-ray flux and spectral properties.

2018 ◽  
Vol 14 (S346) ◽  
pp. 146-148
Author(s):  
Jingzhi Yan ◽  
Wei Liu ◽  
Peng Zhang ◽  
Qingzhong Liu

AbstractBe/X-ray binaries are a major subclass of high mass X-ray binaries. Two different X-ray outbursts are displayed in the X-ray light curves of such systems. It is generally believed that the X-ray outbursts are connected with the neutron star periastron passage of the circumstellar disk around the Be star. The optical emission of the Be star should be very important to understand the X-ray emission of the compact object. We have monitored several Be/X-ray binaries photometrically and spectroscopically in the optical band. The relationship between the optical emission and X-ray activity is described, which is very useful to explain the X-ray outbursts in Be/X-ray binaries.


2021 ◽  
Vol 502 (1) ◽  
pp. L72-L78
Author(s):  
K Mohamed ◽  
E Sonbas ◽  
K S Dhuga ◽  
E Göğüş ◽  
A Tuncer ◽  
...  

ABSTRACT Similar to black hole X-ray binary transients, hysteresis-like state transitions are also seen in some neutron-star X-ray binaries. Using a method based on wavelets and light curves constructed from archival Rossi X-ray Timing Explorer observations, we extract a minimal timescale over the complete range of transitions for 4U 1608-52 during the 2002 and 2007 outbursts and the 1999 and 2000 outbursts for Aql X-1. We present evidence for a strong positive correlation between this minimal timescale and a similar timescale extracted from the corresponding power spectra of these sources.


Author(s):  
R Pattnaik ◽  
K Sharma ◽  
K Alabarta ◽  
D Altamirano ◽  
M Chakraborty ◽  
...  

Abstract Low Mass X-ray binaries (LMXBs) are binary systems where one of the components is either a black hole or a neutron star and the other is a less massive star. It is challenging to unambiguously determine whether a LMXB hosts a black hole or a neutron star. In the last few decades, multiple observational works have tried, with different levels of success, to address this problem. In this paper, we explore the use of machine learning to tackle this observational challenge. We train a random forest classifier to identify the type of compact object using the energy spectrum in the energy range 5-25 keV obtained from the Rossi X-ray Timing Explorer archive. We report an average accuracy of 87±13% in classifying the spectra of LMXB sources. We further use the trained model for predicting the classes for LMXB systems with unknown or ambiguous classification. With the ever-increasing volume of astronomical data in the X-ray domain from present and upcoming missions (e.g., SWIFT, XMM-Newton, XARM, ATHENA, NICER), such methods can be extremely useful for faster and robust classification of X-ray sources and can also be deployed as part of the data reduction pipeline.


2016 ◽  
Vol 12 (S329) ◽  
pp. 355-358
Author(s):  
Peter Kretschmar ◽  
Silvia Martínez-Núñez ◽  
Enrico Bozzo ◽  
Lidia M. Oskinova ◽  
Joachim Puls ◽  
...  

AbstractStrong winds from massive stars are a topic of interest to a wide range of astrophysical fields. In High-Mass X-ray Binaries the presence of an accreting compact object on the one side allows to infer wind parameters from studies of the varying properties of the emitted X-rays; but on the other side the accretor’s gravity and ionizing radiation can strongly influence the wind flow. Based on a collaborative effort of astronomers both from the stellar wind and the X-ray community, this presentation attempts to review our current state of knowledge and indicate avenues for future progress.


2019 ◽  
Vol 628 ◽  
pp. A19 ◽  
Author(s):  
M. Quast ◽  
N. Langer ◽  
T. M. Tauris

Context. The origin and number of the Galactic supergiant X-ray binaries is currently not well understood. They consist of an evolved massive star and a neutron star or black-hole companion. X-rays are thought to be generated from the accretion of wind material donated by the supergiant, while mass transfer due to Roche-lobe overflow is mostly disregarded because the high mass ratios of these systems are thought to render this process unstable. Aims. We investigate how the proximity of supergiant donor stars to the Eddington limit, and their advanced evolutionary stage, may influence the evolution of massive and ultra-luminous X-ray binaries with supergiant donor stars (SGXBs and ULXs). Methods. We constructed models of massive stars with different internal hydrogen and helium gradients (H/He gradients) and different hydrogen-rich envelope masses, and exposed them to slow mass-loss to probe the response of the stellar radius. In addition, we computed the corresponding Roche-lobe overflow mass-transfer evolution with our detailed binary stellar evolution code, approximating the compact objects as point masses. Results. We find that a H/He gradient in the layers beneath the surface, as it is likely present in the well-studied donor stars of observed SGBXs, can enable mass transfer in SGXBs on a nuclear timescale with a black-hole or a neutron star accretor, even for mass ratios in excess of 20. In our binary evolution models, the donor stars rapidly decrease their thermal equilibrium radius and can therefore cope with the inevitably strong orbital contraction imposed by the high mass ratio. We find that the orbital period derivatives of our models agree well with empirical values. We argue that the SGXB phase may be preceded by a common-envelope evolution. The envelope inflation near the Eddington limit means that this mechanism more likely occurs at high metallicity. Conclusion. Our results open a new perspective for understanding that SGBXs are numerous in our Galaxy and are almost completely absent in the Small Magellanic Cloud. Our results may also offer a way to find more ULX systems, to detect mass transfer on nuclear timescales in ULX systems even with neutron star accretors, and shed new light on the origin of the strong B-field in these neutron stars.


1987 ◽  
Vol 92 ◽  
pp. 516-518
Author(s):  
Krishna M.V. Apparao ◽  
S.P. Tarafdar

Several Be stars are identified with bright X-ray sources. (Rappaport and Van den Heuvel, 1982). The bright X-ray emission and observed periodicities indicate the existence of compact objects (white dwarfs, neutron stars or black holes) near the Be stars. A prime example is the brightest X-ray source A0538-66 in LMC, which contains a neutron star with a rotation period of 59 ms. Apparao (1985) explained the X-ray emission, which occurs in periodic flares, by considering an inclined eccentric orbit for the neutron star around the assumed Be-star. The neutron star when it enters a gas ring (around the Be-star) accreting matter giving out X-rays.The X-ray emission from the compact objects, when the gas ring from the Be-star envelopes the objects, has interesting consequences. The X-ray emission produces an ionized region (compact object Stromgren sphere or COSS) in the gas surrounding the compact object (CO).


1998 ◽  
Vol 15 (2) ◽  
pp. 250-253
Author(s):  
Jianke Li ◽  
Dayal T. Wickramasinghe

AbstractX-ray binaries in which the accreting component is a neutron star commonly exhibit significant changes in their spin. In the system Cen X-3, a disk accreting binary system, the pulsar was observed to spin up at a rate ḟ = 8 × 10−13 Hz s−1 when averaged over the past twenty years, but significant fluctuations were observed above this mean. Recent BASTE observations have disclosed that these fluctuations are much larger than previously noted, and appeared to be a system characteristic. The change in the spin state from spin-up to spin-down or vice-versa occurs on a time scale that is much shorter than the instrument can resolve (≤1 d), but appears always to be a similar amplitude, and to occur stochastically. These observations have posed a problem for the conventional torque–mass accretion relation for accreting pulsars, because in this model the spin rate is closely related to the accretion rate, and the latter needs to be finely tuned and to change abruptly to explain the observations. Here we review recent work in this direction and present a coherent picture that explains these observations. We also draw attention to some outstanding problems for future studies.


Author(s):  
V. A. Torres-Sánchez ◽  
E. Contreras

Abstract In this work we obtain an anisotropic neutron star solution by gravitational decoupling starting from a perfect fluid configuration which has been used to model the compact object PSR J0348+0432. Additionally, we consider the same solution to model the Binary Pulsar SAX J1808.4-3658 and X-ray Binaries Her X-1 and Cen X-3 ones. We study the acceptability conditions and obtain that the MGD-deformed solution obey the same physical requirements as its isotropic counterpart. Finally, we conclude that the most stable solutions, according to the adiabatic index and gravitational cracking criterion, are those with the smallest compactness parameters, namely SAX J1808.4-3658 and Her X-1.


2021 ◽  
Vol 923 (1) ◽  
pp. 88
Author(s):  
Teresa Panurach ◽  
Jay Strader ◽  
Arash Bahramian ◽  
Laura Chomiuk ◽  
James C. A. Miller-Jones ◽  
...  

Abstract Accreting neutron stars in low-mass X-ray binaries show outflows—and sometimes jets—in the general manner of accreting black holes. However, the quantitative link between the accretion flow (traced by X-rays) and outflows and/or jets (traced by radio emission) is much less well understood for neutron stars than for black holes, other than the general observation that neutron stars are fainter in the radio at a given X-ray luminosity. We use data from the deep MAVERIC radio continuum survey of Galactic globular clusters for a systematic radio and X-ray study of six luminous (L X > 1034 erg s−1) persistent neutron star X-ray binaries in our survey, as well as two other transient systems also captured by our data. We find that these neutron star X-ray binaries show an even larger range in radio luminosity than previously observed. In particular, in quiescence at L X ∼ 3 × 1034 erg s−1, the confirmed neutron star binary GRS 1747–312 in Terzan 6 sits near the upper envelope of the black hole radio/X-ray correlation, and the persistently accreting neutron star systems AC 211 (in M15) and X1850–087 (in NGC 6712) show unusual radio variability and luminous radio emission. We interpret AC 211 as an obscured “Z source” that is accreting at close to the Eddington limit, while the properties of X1850–087 are difficult to explain, and motivate future coordinated radio and X-ray observations. Overall, our results show that neutron stars do not follow a single relation between inflow and outflow, and confirm that their accretion dynamics are more complex than for black holes.


1998 ◽  
Vol 188 ◽  
pp. 105-106
Author(s):  
D.A. Leahy

The study of X-ray binaries has made great progress with the advent in the past few years of a number of very capable X-ray astronomy missions. These are reviewed, for example, by Bradt et al 1992, and a set of recent relevant papers in Makino and Mitsuda, 1997. For example, ASCA has allowed a significant increase in sensitivity and spectral resolution in 0.5-10 keV X-rays (Tanaka et al 1994). Many recent Compton/GRO results on X-ray binaries are reviewed in the proceedings of the Second Compton Symposium (Fichtel et al 1994). Another source of recent results from analysis of data from several satellite missions is the proceedings of the Evolution of X-ray Binaries (Holt & Day, 1994). In this short paper, the emphasis is on guiding the reader to some relevant literature.


Sign in / Sign up

Export Citation Format

Share Document