scholarly journals The VANDELS ESO public spectroscopic survey: Observations and first data release

2018 ◽  
Vol 616 ◽  
pp. A174 ◽  
Author(s):  
L. Pentericci ◽  
R. J. McLure ◽  
B. Garilli ◽  
O. Cucciati ◽  
P. Franzetti ◽  
...  

This paper describes the observations and the first data release (DR1) of the ESO public spectroscopic survey “VANDELS, a deep VIMOS survey of the CANDELS CDFS and UDS fields”. The main targets of VANDELS are star-forming galaxies at redshift 2.4 < z < 5.5, an epoch when the Universe had not yet reached 20% of its current age, and massive passive galaxies in the range 1 < z < 2.5. By adopting a strategy of ultra-long exposure times, ranging from a minimum of 20 h to a maximum of 80 h per source, VANDELS is specifically designed to be the deepest-ever spectroscopic survey of the high-redshift Universe. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the survey is obtaining ultra-deep optical spectroscopy covering the wavelength range 4800–10 000 Å with a sufficiently high signal-to-noise ratio to investigate the astrophysics of high-redshift galaxy evolution via detailed absorption line studies of well-defined samples of high-redshift galaxies. VANDELS-DR1 is the release of all medium-resolution spectroscopic data obtained during the first season of observations, on a 0.2 square degree area centered around the CANDELS-CDFS (Chandra deep-field south) and CANDELS-UDS (ultra-deep survey) areas. It includes data for all galaxies for which the total (or half of the total) scheduled integration time was completed. The DR1 contains 879 individual objects, approximately half in each of the two fields, that have a measured redshift, with the highest reliable redshifts reaching zspec ~ 6. In DR1 we include fully wavelength-calibrated and flux-calibrated 1D spectra, the associated error spectrum and sky spectrum, and the associated wavelength-calibrated 2D spectra. We also provide a catalog with the essential galaxy parameters, including spectroscopic redshifts and redshift quality flags measured by the collaboration. We present the survey layout and observations, the data reduction and redshift measurement procedure, and the general properties of the VANDELS-DR1 sample. In particular, we discuss the spectroscopic redshift distribution and the accuracy of the photometricredshifts for each individual target category, and we provide some examples of data products for the various target typesand the different quality flags. All VANDELS-DR1 data are publicly available and can be retrieved from the ESO archive. Two further data releases are foreseen in the next two years, and a final data release is currently scheduled for June 2020, which will include an improved rereduction of the entire spectroscopic data set.

2018 ◽  
Vol 614 ◽  
pp. A33 ◽  
Author(s):  
D. Donevski ◽  
V. Buat ◽  
F. Boone ◽  
C. Pappalardo ◽  
M. Bethermin ◽  
...  

Context. Over the last decade a large number of dusty star-forming galaxies has been discovered up to redshift z = 2 − 3 and recent studies have attempted to push the highly confused Herschel SPIRE surveys beyond that distance. To search for z ≥ 4 galaxies they often consider the sources with fluxes rising from 250 μm to 500 μm (so-called “500 μm-risers”). Herschel surveys offer a unique opportunity to efficiently select a large number of these rare objects, and thus gain insight into the prodigious star-forming activity that takes place in the very distant Universe. Aims. We aim to implement a novel method to obtain a statistical sample of 500 μm-risers and fully evaluate our selection inspecting different models of galaxy evolution. Methods. We consider one of the largest and deepest Herschel surveys, the Herschel Virgo Cluster Survey. We develop a novel selection algorithm which links the source extraction and spectral energy distribution fitting. To fully quantify selection biases we make end-to-end simulations including clustering and lensing. Results. We select 133 500 μm-risers over 55 deg2, imposing the criteria: S500 > S350 > S250, S250 > 13.2 mJy and S500 > 30 mJy. Differential number counts are in fairly good agreement with models, displaying a better match than other existing samples. The estimated fraction of strongly lensed sources is 24+6-5% based on models. Conclusions. We present the faintest sample of 500 μm-risers down to S250 = 13.2 mJy. We show that noise and strong lensing have an important impact on measured counts and redshift distribution of selected sources. We estimate the flux-corrected star formation rate density at 4 < z < 5 with the 500 μm-risers and find it to be close to the total value measured in far-infrared. This indicates that colour selection is not a limiting effect to search for the most massive, dusty z > 4 sources.


2018 ◽  
Vol 615 ◽  
pp. A145 ◽  
Author(s):  
M. Mol Lous ◽  
E. Weenk ◽  
M. A. Kenworthy ◽  
K. Zwintz ◽  
R. Kuschnig

Context. Transiting exoplanets provide an opportunity for the characterization of their atmospheres, and finding the brightest star in the sky with a transiting planet enables high signal-to-noise ratio observations. The Kepler satellite has detected over 365 multiple transiting exoplanet systems, a large fraction of which have nearly coplanar orbits. If one planet is seen to transit the star, then it is likely that other planets in the system will transit the star too. The bright (V = 3.86) star β Pictoris is a nearby young star with a debris disk and gas giant exoplanet, β Pictoris b, in a multi-decade orbit around it. Both the planet’s orbit and disk are almost edge-on to our line of sight. Aims. We carry out a search for any transiting planets in the β Pictoris system with orbits of less than 30 days that are coplanar with the planet β Pictoris b. Methods. We search for a planetary transit using data from the BRITE-Constellation nanosatellite BRITE-Heweliusz, analyzing the photometry using the Box-Fitting Least Squares Algorithm (BLS). The sensitivity of the method is verified by injection of artificial planetary transit signals using the Bad-Ass Transit Model cAlculatioN (BATMAN) code. Results. No planet was found in the BRITE-Constellation data set. We rule out planets larger than 0.6 RJ for periods of less than 5 days, larger than 0.75 RJ for periods of less than 10 days, and larger than 1.05 RJ for periods of less than 20 days.


2020 ◽  
Vol 636 ◽  
pp. A74 ◽  
Author(s):  
Trifon Trifonov ◽  
Lev Tal-Or ◽  
Mathias Zechmeister ◽  
Adrian Kaminski ◽  
Shay Zucker ◽  
...  

Context. The High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph has been mounted since 2003 at the ESO 3.6 m telescope in La Silla and provides state-of-the-art stellar radial velocity (RV) measurements with a precision down to ∼1 m s−1. The spectra are extracted with a dedicated data-reduction software (DRS), and the RVs are computed by cross-correlating with a numerical mask. Aims. This study has three main aims: (i) Create easy access to the public HARPS RV data set. (ii) Apply the new public SpEctrum Radial Velocity AnaLyser (SERVAL) pipeline to the spectra, and produce a more precise RV data set. (iii) Determine whether the precision of the RVs can be further improved by correcting for small nightly systematic effects. Methods. For each star observed with HARPS, we downloaded the publicly available spectra from the ESO archive and recomputed the RVs with SERVAL. This was based on fitting each observed spectrum with a high signal-to-noise ratio template created by coadding all the available spectra of that star. We then computed nightly zero-points (NZPs) by averaging the RVs of quiet stars. Results. By analyzing the RVs of the most RV-quiet stars, whose RV scatter is < 5 m s−1, we find that SERVAL RVs are on average more precise than DRS RVs by a few percent. By investigating the NZP time series, we find three significant systematic effects whose magnitude is independent of the software that is used to derive the RV: (i) stochastic variations with a magnitude of ∼1 m s−1; (ii) long-term variations, with a magnitude of ∼1 m s−1 and a typical timescale of a few weeks; and (iii) 20–30 NZPs that significantly deviate by a few m s−1. In addition, we find small (≲1 m s−1) but significant intra-night drifts in DRS RVs before the 2015 intervention, and in SERVAL RVs after it. We confirm that the fibre exchange in 2015 caused a discontinuous RV jump that strongly depends on the spectral type of the observed star: from ∼14 m s−1 for late F-type stars to ∼ − 3 m s−1 for M dwarfs. The combined effect of extracting the RVs with SERVAL and correcting them for the systematics we find is an improved average RV precision: an improvement of ∼5% for spectra taken before the 2015 intervention, and an improvement of ∼15% for spectra taken after it. To demonstrate the quality of the new RV data set, we present an updated orbital solution of the GJ 253 two-planet system. Conclusions. Our NZP-corrected SERVAL RVs can be retrieved from a user-friendly public database. It provides more than 212 000 RVs for about 3000 stars along with much auxiliary information, such as the NZP corrections, various activity indices, and DRS-CCF products.


2018 ◽  
Vol 620 ◽  
pp. A118 ◽  
Author(s):  
C. A. Negrete ◽  
D. Dultzin ◽  
P. Marziani ◽  
D. Esparza ◽  
J. W. Sulentic ◽  
...  

Context. The most highly accreting quasars are of special interest in studies of the physics of active galactic nuclei (AGNs) and host galaxy evolution. Quasars accreting at high rates (L/LEdd ∼ 1) hold promise for use as “standard candles”: distance indicators detectable at very high redshift. However, their observational properties are still largely unknown. Aims. We seek to identify a significant number of extreme accretors. A large sample can clarify the main properties of quasars radiating near L/LEdd ∼ 1 (in this paper they are designated as extreme Population A quasars or simply as extreme accretors) in the Hβ spectral range for redshift ≲0.8. Methods. We use selection criteria derived from four-dimensional Eigenvector 1 (4DE1) studies to identify and analyze spectra for a sample of 334 candidate sources identified from the SDSS DR7 database. The source spectra were chosen to show a ratio RFeII between the FeII emission blend at λ4570 and Hβ, RFeII > 1. Composite spectra were analyzed for systematic trends as a function of Fe II strength, line width, and [OIII] strength. We introduced tighter constraints on the signal-to-noise ratio (S/N) and RFeII values that allowed us to isolate sources most likely to be extreme accretors. Results. We provide a database of detailed measurements. Analysis of the data allows us to confirm that Hβ shows a Lorentzian function with a full width at half maximum (FWHM) of Hβ ≤ 4000 km s−1. We find no evidence for a discontinuity at 2000 km s−1 in the 4DE1, which could mean that the sources below this FWHM value do not belong to a different AGN class. Systematic [OIII] blue shifts, as well as a blueshifted component in Hβ are revealed. We interpret the blueshifts as related to the signature of outflowing gas from the quasar central engine. The FWHM of Hβ is still affected by the blueshifted emission; however, the effect is non-negligible if the FWHM Hβ is used as a “virial broadening estimator” (VBE). We emphasize a strong effect of the viewing angle on Hβ broadening, deriving a correction for those sources that shows major disagreement between virial and concordance cosmology luminosity values. Conclusions. The relatively large scatter between concordance cosmology and virial luminosity estimates can be reduced (by an order of magnitude) if a correction for orientation effects is included in the FWHM Hβ value; outflow and sample definition yield relatively minor effects.


2019 ◽  
Vol 489 (4) ◽  
pp. 5046-5052 ◽  
Author(s):  
Renae E Wall ◽  
Mukremin Kilic ◽  
P Bergeron ◽  
B Rolland ◽  
C Genest-Beaulieu ◽  
...  

ABSTRACT We use 1837 DA white dwarfs with high signal-to-noise ratio spectra and Gaia parallaxes to verify the absolute calibration and extinction coefficients for the Galaxy Evolution Explorer (GALEX). We use white dwarfs within 100 pc to verify the linearity correction to the GALEX data. We find that the linearity correction is valid for magnitudes brighter than 15.95 and 16.95 for the far-ultraviolet (FUV) and near-ultraviolet (NUV) bands, respectively. We also use DA white dwarfs beyond 250 pc to calculate extinction coefficients in the FUV and NUV bands: RFUV = 8.01 ± 0.07 and RNUV = 6.72 ± 0.04. These are consistent with the predicted extinction coefficients for Milky Way-type dust in the FUV, but smaller than predictions in the NUV. With well understood optical spectra and state-of-the-art model atmosphere analysis, these white dwarfs currently provide the best constraints on the extinction coefficients for the GALEX data.


2006 ◽  
Vol 2 (S235) ◽  
pp. 234-235
Author(s):  
Premana W. Premadi ◽  
A. Sitti Maryam

This work is a preliminary result of our attempt to examine the use of SFR in the study of galaxy evolution. For this purpose we use the Sloan Digital Sky Survey Data Release 2 (SDSS DR2) Abazajian et al. (2004) and the SFR Catalogue generated from this data set by Brinchmann et al. (2004) and Kaufmann et al. (2003). Following Kewley et al. (2001) we use the Diagnostic Diagram, log ([OIII]/Hβ) vs log ([NII]/Hα), to separate the star forming galaxies from other emission lines sources such as AGN. Choosing only those with S/N > 3 out of the Brinchmann et al. (2004) catalogue, we arrive at about 200 thousand galaxies as our starting SFR subsample. With 0.05 < z < 0.22 and limit at r = 17.77, the subsample can be used to reconstruct the properties of a volume limited sample of galaxies with M* = 6 1010Modot. We benefit from the fact that Brinchmann et al. (2004) SFR Catalogue has already been aperture-corrected using the likelihood distribution P(SFR/Li/colour) scheme. For the environment, we use the data generated by Kaufmann et al. (2003), and arrive at about 40 thousand target galaxies. In this work the environment is characterised by the number (N=0-30) of neighbouring galaxies within a projected radius of 2 Mpc and velocity di.erence of 500km/s from each target galaxy, and the magnitude limit is 14.5 < r < 17.77.


2020 ◽  
Vol 223 (2) ◽  
pp. 1313-1326
Author(s):  
S J Gibbons ◽  
T Kværna ◽  
T Tiira ◽  
E Kozlovskaya

Summary ‘Precision seismology’ encompasses a set of methods which use differential measurements of time-delays to estimate the relative locations of earthquakes and explosions. Delay-times estimated from signal correlations often allow far more accurate estimates of one event location relative to another than is possible using classical hypocentre determination techniques. Many different algorithms and software implementations have been developed and different assumptions and procedures can often result in significant variability between different relative event location estimates. We present a Ground Truth (GT) dataset of 55 military surface explosions in northern Finland in 2007 that all took place within 300 m of each other. The explosions were recorded with a high signal-to-noise ratio to distances of about 2°, and the exceptional waveform similarity between the signals from the different explosions allows for accurate correlation-based time-delay measurements. With exact coordinates for the explosions, we are able to assess the fidelity of relative location estimates made using any location algorithm or implementation. Applying double-difference calculations using two different 1-D velocity models for the region results in hypocentre-to-hypocentre distances which are too short and it is clear that the wavefield leaving the source region is more complicated than predicted by the models. Using the GT event coordinates, we are able to measure the slowness vectors associated with each outgoing ray from the source region. We demonstrate that, had such corrections been available, a significant improvement in the relative location estimates would have resulted. In practice we would of course need to solve for event hypocentres and slowness corrections simultaneously, and significant work will be needed to upgrade relative location algorithms to accommodate uncertainty in the form of the outgoing wavefield. We present this data set, together with GT coordinates, raw waveforms for all events on six regional stations, and tables of time-delay measurements, as a reference benchmark by which relative location algorithms and software can be evaluated.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. KS71-KS91 ◽  
Author(s):  
Jubran Akram ◽  
David W. Eaton

We have evaluated arrival-time picking algorithms for downhole microseismic data. The picking algorithms that we considered may be classified as window-based single-level methods (e.g., energy-ratio [ER] methods), nonwindow-based single-level methods (e.g., Akaike information criterion), multilevel- or array-based methods (e.g., crosscorrelation approaches), and hybrid methods that combine a number of single-level methods (e.g., Akazawa’s method). We have determined the key parameters for each algorithm and developed recommendations for optimal parameter selection based on our analysis and experience. We evaluated the performance of these algorithms with the use of field examples from a downhole microseismic data set recorded in western Canada as well as with pseudo-synthetic microseismic data generated by adding 100 realizations of Gaussian noise to high signal-to-noise ratio microseismic waveforms. ER-based algorithms were found to be more efficient in terms of computational speed and were therefore recommended for real-time microseismic data processing. Based on the performance on pseudo-synthetic and field data sets, we found statistical, hybrid, and multilevel crosscorrelation methods to be more efficient in terms of accuracy and precision. Pick errors for S-waves are reduced significantly when data are preconditioned by applying a transformation into ray-centered coordinates.


2018 ◽  
Vol 620 ◽  
pp. A76 ◽  
Author(s):  
B. Anguiano ◽  
S. R. Majewski ◽  
C. Allende-Prieto ◽  
S. Meszaros ◽  
H. Jönsson ◽  
...  

Context. In the era of massive spectroscopy surveys, automated stellar parameter pipelines and their validation are extremely important for an efficient scientific exploitation of the spectra. Aims. We undertake a critical and comprehensive comparison of the radial velocities and the main stellar atmosphere parameters for stars in common between the latest data releases from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE) and the Large sky Area Multi-Object Spectroscopic Telescope (LAMOST) surveys. Methods. APOGEE is a high-resolution (R = 22 500) spectroscopic survey with high signal-to-noise ratio that is part of the Sloan Digital Sky Survey (SDSS). The latest data release, SDSS DR14, comprises APOGEE spectra for 263 444 stars, together with main stellar parameters and individual abundances for up to 20 chemical species. LAMOST is a low-resolution (R = 1800) optical spectroscopic survey also in the Northern Hemisphere, where 4000 fibers can be allocated simultaneously. LAMOST DR3 contains 3 177 995 stars. Results. A total of 42 420 dwarfs and giants stars are in common between the APOGEE DR14 – LAMOST DR3 stellar catalogs. A comparison between APOGEE and LAMOST RVs shows a clear offset of 4.54 ± 0.03 km s−1, with a dispersion of 5.8 km s−1, in the sense that APOGEE radial velocities are higher. We observe a small offset in the effective temperatures of about 13 K, with a scatter of 155 K. A small offset in [Fe/H] of about 0.06 dex together with a scatter of 0.13 dex is also observed. We note that the largest offset between the surveys occurs in the surface gravities. Using only surface gravities in calibrated red giants from APOGEE DR14, with which there are 24 074 stars in common, a deviation of 0.14 dex is found with substantial scatter (0.25 dex). There are 17 482 red giant stars in common between APOGEE DR14 and those in LAMOST tied to APOGEE DR12 via the code called the Cannon. There is generally good agreement between the two data-sets. However, we find that the differences in the stellar parameters depend on effective temperature. For metal-rich stars, a different trend for the [Fe/H] discrepancies is found. Surprisingly, we see no correlation between the internal APOGEE DR14 – DR12 differences in Teff and those in DR14 – LAMOST tied to DR12, where a correlation should be expected since LAMOST has been calibrated to APOGEE DR12. We find no correlation either between the [Fe/H] discrepancies, suggesting that LAMOST/Cannon is not well coupled to the APOGEE DR12 stellar parameter scale. An [Fe/H] dependence between the stellar parameters in APOGEE DR12 and those in DR14 is reported. We find a weak correlation in the differences between APOGEE DR14 – DR12 and LAMOST on DR12 surface gravity for stars hotter than 4800 K and in the log g range between 2.0 and 2.8 dex. We do not observe an [Fe/H] dependency in the gravity discrepancies.


Author(s):  
Alberto Sesana ◽  
Natalia Korsakova ◽  
Manuel Arca Sedda ◽  
Vishal Baibhav ◽  
Enrico Barausse ◽  
...  

AbstractWe propose a space-based interferometer surveying the gravitational wave (GW) sky in the milli-Hz to μ-Hz frequency range. By the 2040s, the μ-Hz frequency band, bracketed in between the Laser Interferometer Space Antenna (LISA) and pulsar timing arrays, will constitute the largest gap in the coverage of the astrophysically relevant GW spectrum. Yet many outstanding questions related to astrophysics and cosmology are best answered by GW observations in this band. We show that a μ-Hz GW detector will be a truly overarching observatory for the scientific community at large, greatly extending the potential of LISA. Conceived to detect massive black hole binaries from their early inspiral with high signal-to-noise ratio, and low-frequency stellar binaries in the Galaxy, this instrument will be a cornerstone for multimessenger astronomy from the solar neighbourhood to the high-redshift Universe.


Sign in / Sign up

Export Citation Format

Share Document