scholarly journals Global models of planet formation and evolution

2014 ◽  
Vol 14 (2) ◽  
pp. 201-232 ◽  
Author(s):  
C. Mordasini ◽  
P. Mollière ◽  
K.-M. Dittkrist ◽  
S. Jin ◽  
Y. Alibert

AbstractDespite the strong increase in observational data on extrasolar planets, the processes that led to the formation of these planets are still not well understood. However, thanks to the high number of extrasolar planets that have been discovered, it is now possible to look at the planets as a population that puts statistical constraints on theoretical formation models. A method that uses these constraints is planetary population synthesis where synthetic planetary populations are generated and compared to the actual population. The key element of the population synthesis method is a global model of planet formation and evolution. These models directly predict observable planetary properties based on properties of the natal protoplanetary disc, linking two important classes of astrophysical objects. To do so, global models build on the simplified results of many specialized models that address one specific physical mechanism. We thoroughly review the physics of the sub-models included in global formation models. The sub-models can be classified as models describing the protoplanetary disc (of gas and solids), those that describe one (proto)planet (its solid core, gaseous envelope and atmosphere), and finally those that describe the interactions (orbital migration and N-body interaction). We compare the approaches taken in different global models, discuss the links between specialized and global models, and identify physical processes that require improved descriptions in future work. We then shortly address important results of planetary population synthesis like the planetary mass function or the mass–radius relationship. With these statistical results, the global effects of physical mechanisms occurring during planet formation and evolution become apparent, and specialized models describing them can be put to the observational test. Owing to their nature as meta models, global models depend on the results of specialized models, and therefore on the development of the field of planet formation theory as a whole. Because there are important uncertainties in this theory, it is likely that the global models will in future undergo significant modifications. Despite these limitations, global models can already now yield many testable predictions. With future global models addressing the geophysical characteristics of the synthetic planets, it should eventually become possible to make predictions about the habitability of planets based on their formation and evolution.

2018 ◽  
Vol 619 ◽  
pp. A174 ◽  
Author(s):  
N. Brügger ◽  
Y. Alibert ◽  
S. Ataiee ◽  
W. Benz

Context. One of the main scenarios of planet formation is the core accretion model where a massive core forms first and then accretes a gaseous envelope. This core forms by accreting solids, either planetesimals or pebbles. A key constraint in this model is that the accretion of gas must proceed before the dissipation of the gas disc. Classical planetesimal accretion scenarios predict that the time needed to form a giant planet’s core is much longer than the time needed to dissipate the disc. This difficulty led to the development of another accretion scenario, in which cores grow by accretion of pebbles, which are much smaller and thus more easily accreted, leading to more rapid formation. Aims. The aim of this paper is to compare our updated pebble-based planet formation model with observations, in particular the well-studied metallicity effect. Methods. We adopt the Bitsch et al. (2015a, A&A, 575, A28) disc model and the Bitsch et al. (2015b, A&A, 582, A112) pebble model and use a population synthesis approach to compare the formed planets with observations. Results. We find that keeping the same parameters as in Bitsch et al. (2015b, A&A, 582, A112) leads to no planet growth due to a computation mistake in the pebble flux (2018b). Indeed a large fraction of the heavy elements should be put into pebbles (Zpeb∕Ztot = 0.9) in order to form massive planets using this approach. The resulting mass functions show a huge amount of giants and a lack of Neptune-mass planets, which are abundant according to observations. To overcome this issue we include the computation of the internal structure for the planetary atmosphere in our model. This leads to the formation of Neptune-mass planets but no observable giants. Furthermore, reducing the opacity of the planetary envelope more closely matches observations. Conclusions. We conclude that modelling the internal structure for the planetary atmosphere is necessary to reproduce observations.


2004 ◽  
Vol 202 ◽  
pp. 141-148 ◽  
Author(s):  
Alan P. Boss

The discovery of gas giant planets around nearby stars has launched a new era in our understanding of the formation and evolution of planetary systems. However, none of the over four dozen companions detected to date strongly resembles Jupiter or Saturn: their inferred masses range from sub-Saturn-mass to 10 Jupiter-masses or more, while their orbits extend from periods of a few days to a few years. Given this situation, it seems prudent to re-examine mechanisms for gas giant planet formation. The two extreme cases are top-down or bottom-up. The latter is the core accretion mechanism, long favored for our Solar System, where a roughly 10 Earth-mass solid core forms by collisional accumulation of planetesimals, followed by hydrodynamic accretion of a gaseous envelope. The former is the long-discarded disk instability mechanism, where the protoplanetary disk forms self-gravitating, gaseous protoplanets through a gravitational instability of the gas, accompanied by settling and coagulation of dust grains to form solid cores. Both of these mechanisms have a number of advantages and disadvantages, making a purely theoretical choice between them difficult at present. Observations should be able to decide the dominant mechanism by dating the epoch of gas giant planet formation: core accretion requires more than a million years to form a Jupiter-mass planet, whereas disk instability is much more rapid.


2021 ◽  
Vol 645 ◽  
pp. A43
Author(s):  
O. Schib ◽  
C. Mordasini ◽  
N. Wenger ◽  
G.-D. Marleau ◽  
R. Helled

Context. The properties of protoplanetary discs determine the conditions for planet formation. In addition, planets can already form during the early stages of infall. Aims. We constrain physical quantities such as the mass, radius, lifetime, and gravitational stability of protoplanetary discs by studying their evolution from formation to dispersal. Methods. We perform a population synthesis of protoplanetary discs with a total of 50 000 simulations using a 1D vertically integrated viscous evolution code, studying a parameter space of final stellar mass from 0.05 to 5 M⊙. Each star-and-disc system is set up shortly after the formation of the protostar and fed by infalling material from the parent molecular cloud core. Initial conditions and infall locations are chosen based on the results from a radiation-hydrodynamic population synthesis of circumstellar discs. We also consider a different infall prescription based on a magnetohydrodynamic (MHD) collapse simulation in order to assess the influence of magnetic fields on disc formation. The duration of the infall phase is chosen to produce a stellar mass distribution in agreement with the observationally determined stellar initial mass function. Results. We find that protoplanetary discs are very massive early in their lives. When averaged over the entire stellar population, the discs have masses of ~0.3 and 0.1 M⊙ for systems based on hydrodynamic or MHD initial conditions, respectively. In systems characterised by a final stellar mass ~1 M⊙, we find disc masses of ~0.7 M⊙ for the “hydro” case and ~0.2 M⊙ for the “MHD” case at the end of the infall phase. Furthermore, the inferred total disc lifetimes are long, ≈5–7 Myr on average. This is despite our choice of a high value of 10−2 for the background viscosity α-parameter. In addition, we find that fragmentation is common in systems that are simulated using hydrodynamic cloud collapse, with more fragments of larger mass formed in more massive systems. In contrast, if disc formation is limited by magnetic fields, fragmentation may be suppressed entirely. Conclusions. Our work draws a picture quite different from the one often assumed in planet formation studies: protoplanetary discs are more massive and live longer. This means that more mass is available for planet formation. Additionally, when fragmentation occurs, it can affect the disc’s evolution by transporting large amounts of mass radially. We suggest that the early phases in the lives of protoplanetary discs should be included in studies of planet formation. Furthermore, the evolution of the central star, including its accretion history, should be taken into account when comparing theoretical predictions of disc lifetimes with observations.


Author(s):  
I. Ferreras ◽  
C. Weidner ◽  
A. Vazdekis ◽  
F. La Barbera

The stellar initial mass function (IMF) is one of the fundamental pillars in studies of stellar populations. It is the mass distribution of stars at birth, and it is traditionally assumed to be universal, adopting generic functions constrained by resolved (i.e. nearby) stellar populations (e.g., Salpeter 1955; Kroupa 2001; Chabrier 2003). However, for the vast majority of cases, stars are not resolved in galaxies. Therefore, the interpretation of the photo-spectroscopic observables is complicated by the many degeneracies present between the properties of the unresolved stellar populations, including IMF, age distribution, and chemical composition. The overall good match of the photometric and spectroscopic observations of galaxies with population synthesis models, adopting standard IMF choices, made this issue a relatively unimportant one for a number of years. However, improved models and observations have opened the door to constraints on the IMF in unresolved stellar populations via gravity-sensitive spectral features. At present, there is significant evidence of a non-universal IMF in early-type galaxies (ETGs), with a trend towards a dwarf-enriched distribution in the most massive systems (see, e.g., van Dokkum & Conroy 2010; Ferreras et al. 2013; La Barbera et al. 2013). Dynamical and strong-lensing constraints of the stellar M/L in similar systems give similar results, with heavier M/L in the most massive ETGs (see, e.g., Cappellari et al. 2012; Posacki et al. 2015). Although the interpretation of the results is still open to discussion (e.g., Smith 2014; La Barbera 2015), one should consider the consequences of such a bottom-heavy IMF in massive galaxies.


2018 ◽  
Vol 612 ◽  
pp. A108 ◽  
Author(s):  
A.-M. Lagrange ◽  
M. Keppler ◽  
N. Meunier ◽  
J. Lannier ◽  
H. Beust ◽  
...  

Context. The search for extrasolar planets has been limited so far to close orbit (typ. ≤5 au) planets around mature solar-type stars on the one hand, and to planets on wide orbits (≥10 au) around young stars on the other hand. To get a better view of the full giant planet population, we have started a survey to search for giant planets around a sample of carefully selected young stars. Aims. This paper aims at exploring the giant planet population around one of our targets, β Pictoris, over a wide range of separations. With a disk and a planet already known, the β Pictoris system is indeed a very precious system for studies of planetary formation and evolution, as well as of planet–disk interactions. Methods. We analyse more than 2000 HARPS high-resolution spectra taken over 13 years as well as NaCo images recorded between 2003 and 2016. We combine these data to compute the detection probabilities of planets throughout the disk, from a fraction of au to a few dozen au. Results. We exclude the presence of planets more massive than 3 MJup closer than 1 au and further than 10 au, with a 90% probability. 15+ MJup companions are excluded throughout the disk except between 3 and 5 au with a 90% probability. In this region, we exclude companions with masses larger than 18 (resp. 30) MJup with probabilities of 60 (resp. 90) %.


2018 ◽  
Vol 619 ◽  
pp. A165 ◽  
Author(s):  
A. J. Cridland

Here a physical model for terminating giant planet formation is outlined and compared to other methods of late-stage giant planet formation. As has been pointed out before, gas accreting into a gap and onto the planet will encounter the planetary dynamo-generated magnetic field. The planetary magnetic field produces an effective cross section through which gas is accreted. Gas outside this cross section is recycled into the protoplanetary disk, hence only a fraction of mass that is accreted into the gap remains bound to the planet. This cross section inversely scales with the planetary mass, which naturally leads to stalled planetary growth late in the formation process. We show that this method naturally leads to Jupiter-mass planets and does not invoke any artificial truncation of gas accretion, as has been done in some previous population synthesis models. The mass accretion rate depends on the radius of the growing planet after the gap has opened, and we show that so-called hot-start planets tend to become more massive than cold-start planets. When this result is combined with population synthesis models, it might show observable signatures of cold-start versus hot-start planets in the exoplanet population.


2018 ◽  
Vol 14 (S345) ◽  
pp. 316-317 ◽  
Author(s):  
M. Mugrauer ◽  
C. Ginski ◽  
N. Vogt ◽  
R. Neuhäuser ◽  
C. Adam

AbstractIn order to determine the true impact of stellar multiplicity on the formation and evolution of planets, we initiated direct imaging surveys to search for (sub)stellar companions of exoplanet host stars on close orbits, as their gravitational impact on the planet bearing disk at first and on formed planets afterwards is expected to be maximal. According to theory these are the most challenging environments for planet formation and evolution but might occur quite frequently in the milky way, due to the large number of multiple stars within our galaxy. On this poster we showed results, obtained so far in the course of our AO and Lucky-imaging campaigns of exoplanet host stars, conducted with NACO/ESO-VLT for southern and with AstraLux/CAHA2.2m for northern targets, respectively. In addition, we introduced our new high contrast imaging survey with SPHERE/ESO-VLT to search for close companions of southern exoplanet host stars, and presented some first results.


1996 ◽  
Vol 171 ◽  
pp. 441-441
Author(s):  
Ricardo Piorno Schiavon ◽  
Beatriz Barbuy

We compute synthetic spectra in the region around 1 μm, including the Wing-Ford band (WFB) of Iron Hydride (FeH) in the calculations. This band is known to be a good indicator of surface gravities of M stars. Employing Kurucz model atmospheres, we study the response of the intensity of the WFB to atmospheric parameters and check our results against observations of M dwarfs. This study is part of an ongoing project which aims to investigate the M dwarf-to-giant ratio in galaxies, through a population synthesis method, exploring a number of spectral indicators in the near infrared, such as the WFB, the NaI, CaII and CO near infrared features.


Sign in / Sign up

Export Citation Format

Share Document