scholarly journals Fundamental physics and the absence of sub-millisecond pulsars

2018 ◽  
Vol 620 ◽  
pp. A69 ◽  
Author(s):  
B. Haskell ◽  
J. L. Zdunik ◽  
M. Fortin ◽  
M. Bejger ◽  
R. Wijnands ◽  
...  

Context. Rapidly rotating neutron stars are an ideal laboratory to test models of matter at high densities. In particular, the maximum rotation frequency of a neutron star depends on the equation of state and can be used to test models of the interior. However, observations of the spin distribution of rapidly rotating neutron stars show evidence for a lack of stars spinning at frequencies higher than f ≈ 700 Hz, well below the predictions of theoretical equations of state. This has generally been taken as evidence of an additional spin-down torque operating in these systems, and it has been suggested that gravitational wave torques may be operating and be linked to a potentially observable signal. Aims. We aim to determine whether additional spin-down torques (possibly due to gravitational wave emission) are necessary, or if the observed limit of f ≈ 700 Hz could correspond to the Keplerian (mass-shedding) break-up frequency for the observed systems, and is simply a consequence of the currently unknown state of matter at high densities. Methods. Given our ignorance with regard to the true equation of state of matter above nuclear saturation densities, we make a minimal physical assumption and only demand causality, that is, that the speed of sound in the interior of the neutron star should be lower than or equal to the speed of light c. We then connected our causally limited equation of state to a realistic microphysical crustal equation of state for densities below nuclear saturation density. This produced a limiting model that gave the lowest possible maximum frequency, which we compared to observational constraints on neutron star masses and frequencies. We also compared our findings with the constraints on the tidal deformability obtained in the observations of the GW170817 event. Results. We rule out centrifugal breakup as the mechanism preventing pulsars from spinning faster than f ≈ 700 Hz, as the lowest breakup frequency allowed by our causal equation of state is f ≈ 1200 Hz. A low-frequency cutoff, around f ≈ 800 Hz could only be possible when we assume that these systems do not contain neutron stars with masses above M ≈ 2 M⊙. This would have to be due either to selection effects, or possibly to a phase transition in the interior of the neutron star that leads to softening at high densities and a collapse to either a black hole or a hybrid star above M ≈ 2 M⊙. Such a scenario would, however, require a somewhat unrealistically stiff equation of state for hadronic matter, in tension with recent constraints obtained from gravitational wave observations of a neutron star merger.

2021 ◽  
Vol 252 ◽  
pp. 05004
Author(s):  
Polychronis Koliogiannis ◽  
Charalampos Moustakidis

The knowledge of the equation of state is a key ingredient for many dynamical phenomena that depend sensitively on the hot and dense nuclear matter, such as the formation of protoneutron stars and hot neutron stars. In order to accurately describe them, we construct equations of state at FInite temperature and entropy per baryon for matter with varying proton fractions. This procedure is based on the momentum dependent interaction model and state-of-the-art microscopic data. In addition, we investigate the role of thermal and rotation effects on microscopic and macroscopic properties of neutron stars, including the mass and radius, the frequency, the Kerr parameter, the central baryon density, etc. The latter is also connected to the hot and rapidly rotating remnant after neutron star merger. The interplay between these quantities and data from late observations of neutron stars, both isolated and in matter of merging, could provide useful insight and robust constraints on the equation of state of nuclear matter.


2002 ◽  
Vol 185 ◽  
pp. 612-615
Author(s):  
Johannes Ruoff

AbstractThe equation of state (EOS) is still the big unknown in the physics of neutron stars. An accurate measurement of both the mass and the radius of a neutron star would put severe constraints on the range of possible EOSs. I discuss how the parameters of the oscillation modes of a neutron star, measured from the emitted gravitational waves, can in principle be used to infer its mass and radius, and thus reveal its EOS.


2020 ◽  
Vol 641 ◽  
pp. A56
Author(s):  
Xiaoxiao Ren ◽  
Daming Wei ◽  
Zhenyu Zhu ◽  
Yan Yan ◽  
Chengming Li

The joint detection of the gravitational wave signal and the electromagnetic emission from a binary neutron star merger can place unprecedented constraint on the equation of state of supranuclear matter. Although a variety of electromagnetic counterparts have been observed for GW170817, including a short gamma-ray burst, kilonova, and the afterglow emission, the nature of the merger remnant is still unclear, however. The X-ray plateau is another important characteristics of short gamma-ray bursts. This plateau is probably due to the energy injection from a rapidly rotating magnetar. We investigate what we can learn from the detection of a gravitational wave along with the X-ray plateau. In principle, we can estimate the mass of the merger remnant if the X-ray plateau is caused by the central magnetar. We selected eight equations of state that all satisfy the constraint given by the gravitational wave observation, and then calculated the mass of the merger remnants of four short gamma-ray bursts with a well-measured X-ray plateau. If, on the other hand, the mass of the merger remnant can be obtained by gravitational wave information, then by comparing the masses derived by these two different methods can further constrain the equation of state. We discuss the possibility that the merger product is a quark star. In addition, we estimate the possible mass range for the recently discovered X-ray transient CDF-S XT2 that probably originated from a binary neutron star merger. Finally, under the assumption that the post-merger remnant of GW170817 was a supramassive neutron star, we estimated the allowed parameter space of the supramassive neutron star and find that in this case, the magnetic dipole radiation energy is so high that it may have some effects on the short gamma-ray burst and kilonova emission. The lack of detection of these effects suggests that the merger product of GW170817 may not be a supermassive neutron star.


2018 ◽  
Vol 27 (16) ◽  
pp. 1950002 ◽  
Author(s):  
Zeinab Rezaei

The dark matter (DM) in neutron stars can exist from the lifetime of the progenitor or when captured by this compact object. The properties of DM that enter the neutron stars through each step could be different from each other. Here, we investigate the structure of neutron stars which are influenced by the DM in two processes. Applying a generalization of two-fluid formalism to three-fluid one and the equation-of-state from the rotational curves of galaxies, we explore the structure of double DM admixed neutron stars. The behavior of the neutron and DM portions for these stars is considered. In addition, the influence of the DM equations of state on the stars with different contributions of visible and DM are studied. The gravitational redshift of these stars in different cases of DM equations of state is investigated.


2021 ◽  
Vol 252 ◽  
pp. 05005
Author(s):  
Alkiviadis Kanakis-Pegios ◽  
Polychronis Koliogiannis ◽  
Charalampos Moustakidis

One of the greatest interest and open problems in nuclear physics is the upper limit of the speed of sound in dense nuclear matter. Neutron stars, both in isolated and binary system cases, constitute a very promising natural laboratory for studying this kind of problem. This present work is based on one of our recent study, regarding the speed of sound and possible constraints that we can obtain from neutron stars. To be more specific, in the core of our study lies the examination of the speed of sound through the measured tidal deformability of a binary neutron star system (during the inspiral phase). The relation between the maximum neutron star mass scenario and the possible upper bound on the speed of sound is investigated. The approach that we used follows the contradiction between the recent observations of binary neutron star systems, in which the effective tidal deformability favors softer equations of state, while the high measured masses of isolated neutron stars favor stiffer equations of state. In our approach, we parametrized the stiffness of the equation of state by using the speed of sound. Moreover, we used the two recent observations of binary neutron star mergers from LIGO/VIRGO, so that we can impose robust constraints on the speed of sound. Furthermore, we postulate the kind of future measurements that could be helpful by imposing more stringent constraints on the equation of state.


2019 ◽  
Vol 21 ◽  
pp. 44
Author(s):  
Ch. C. Moustakidis

We study the effect of nuclear equation of state on the tidal polarizability of neutron stars. The predicted equations of state for the β-stable nuclear matter are parameterized by varying the slope L of the symmetry energy at saturation density on the interval 65 MeV≤L≤115 MeV. The effects of the density dependence of the nuclear symmetry energy on the neutron star tidal polarizability are presented and analyzed. A comparison of theoretical predictions with the recent observation predictions is also performed and analyzed.


2020 ◽  
Vol 642 ◽  
pp. A78 ◽  
Author(s):  
F. Morawski ◽  
M. Bejger

Context. Neutron stars are currently studied with an rising number of electromagnetic and gravitational-wave observations, which will ultimately allow us to constrain the dense matter equation of state and understand the physical processes at work within these compact objects. Neutron star global parameters, such as the mass and radius, can be used to obtain the equation of state by directly inverting the Tolman-Oppenheimer-Volkoff equations. Here, we investigate an alternative approach to this procedure. Aims. The aim of this work is to study the application of the artificial neural networks guided by the autoencoder architecture as a method for precisely reconstructing the neutron star equation of state, using their observable parameters: masses, radii, and tidal deformabilities. In addition, we study how well the neutron star radius can be reconstructed using only the gravitational-wave observations of tidal deformability, that is, using quantities that are not related in any straightforward way. Methods. The application of an artificial neural network in the equation-of-state reconstruction exploits the non-linear potential of this machine learning model. Since each neuron in the network is basically a non-linear function, it is possible to create a complex mapping between the input sets of observations and the output equation-of-state table. Within the supervised training paradigm, we construct a few hidden-layer deep neural networks on a generated data set, consisting of a realistic equation of state for the neutron star crust connected with a piecewise relativistic polytropes dense core, with its parameters representative of state-of-the art realistic equations of state. Results. We demonstrate the performance of our machine-learning implementation with respect to the simulated cases with a varying number of observations and measurement uncertainties. Furthermore, we study the impact of the neutron star mass distributions on the results. Finally, we test the reconstruction of the equation of state trained on parametric polytropic training set using the simulated mass–radius and mass–tidal-deformability sequences based on realistic equations of state. Neural networks trained with a limited data set are capable of generalising the mapping between global parameters and equation-of-state input tables for realistic models.


2020 ◽  
Vol 498 (1) ◽  
pp. 344-354 ◽  
Author(s):  
J-B Wei ◽  
G F Burgio ◽  
H-J Schulze ◽  
D Zappalà

ABSTRACT We model the cooling of hybrid neutron stars combining a microscopic nuclear equation of state in the Brueckner–Hartree–Fock approach with different quark models. We then analyse the neutron star cooling curves predicted by the different models and single out the preferred ones. We find that the possibility of neutron p-wave pairing can be excluded in our scenario.


2020 ◽  
Vol 493 (4) ◽  
pp. 5408-5412 ◽  
Author(s):  
Eric Thrane ◽  
Stefan Osłowski ◽  
Paul D Lasky

ABSTRACT Recent work highlights that tens of Galactic double neutron stars are likely to be detectable in the millihertz band of the space-based gravitational-wave observatory, LISA, some of which might be detectable as radio pulsars using the Square Kilometer Array (SKA). We point out that the joint LISA + SKA detection of a fgw ≳ 1 mHz binary, corresponding to a binary period of ≲400 s, would enable precision measurements of ultrarelativistic phenomena. We show that, given plausible assumptions, multimessenger observations of ultrarelativistic binaries can be used to constrain the neutron star equation of state with remarkable fidelity. It may be possible to measure the mass–radius relation with a precision of ≈0.2 per cent after 10 yr of observations with the SKA. Such a measurement would be roughly an order of magnitude more precise than possible with other proposed observations. We summarize some of the other remarkable science made possible with multimessenger observations of millihertz binaries, and discuss the prospects for the detection of such objects.


2015 ◽  
Vol 92 (2) ◽  
Author(s):  
M. Agathos ◽  
J. Meidam ◽  
W. Del Pozzo ◽  
T. G. F. Li ◽  
M. Tompitak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document