scholarly journals Nuclear equation of state constraints from tidal deformability of neutron stars

2019 ◽  
Vol 21 ◽  
pp. 44
Author(s):  
Ch. C. Moustakidis

We study the effect of nuclear equation of state on the tidal polarizability of neutron stars. The predicted equations of state for the β-stable nuclear matter are parameterized by varying the slope L of the symmetry energy at saturation density on the interval 65 MeV≤L≤115 MeV. The effects of the density dependence of the nuclear symmetry energy on the neutron star tidal polarizability are presented and analyzed. A comparison of theoretical predictions with the recent observation predictions is also performed and analyzed.

2012 ◽  
Vol 20 ◽  
pp. 27
Author(s):  
Ch. C. Moustakidis

We study the effect of nuclear equation of state on the r-mode instability of a rotating neutron star. We consider the case where the crust of the neutron star is perfectly rigid and we employ the related theory. The effects of the density dependence of the nuclear symmetry energy on r-mode instability properties are presented and analyzed. A comparison of theoretical predictions with observed neutron stars in low-mass X-ray binaries is also performed and analyzed.


2010 ◽  
Vol 19 (08n09) ◽  
pp. 1712-1719
Author(s):  
DE-HUA WEN ◽  
BAO-AN LI ◽  
PLAMEN G. KRASTEV

The frequencies and damping times of the axial w-mode oscillations of neutron stars are investigated using a nuclear equation of state (EOS) partially constrained by the available terrestrial laboratory data. It is found that the nuclear symmetry energy E sym (ρ), especially its high density behavior, plays an important role in determining both the eigen-frequencies and the damping times of these oscillations.


2019 ◽  
Vol 26 ◽  
pp. 112
Author(s):  
G. Ahn ◽  
P. Papakonstantinou

Many efforts are made to determine the nuclear equation of state which governs the properties and evolution of neutron stars. Especially important is to constrain the parameters of the nuclear symmetry energy. In those efforts, nuclear energy density functional (EDF) theory has been a very useful tool, as it provides a unified framework for the description both of nuclei, which can be studied on Earth, and of infinite matter and its nuclear equation of state, which is a necessary input in the modelling of neutron stars. In the present study, a new nuclear EDF, the KIDS functional, is explored with a focus on the nuclear symmetry energy. The form of the functional allows us to vary at will the poorly constrained high-order derivatives of the symmetry energy and examine how the maximum possible mass of a neutron star is affected. Some tentative constraints on the skewness are presented, which will help guide further refinements. It is noteworthy that the pressure of neutron-rich matter is found strongly affected by skewness variations, both at low and high densities.


2020 ◽  
Vol 15 ◽  
pp. 128
Author(s):  
Ch. C. Moustakidis ◽  
V. P. Psonis ◽  
S. E. Massen

We construct a class of nuclear equations of state based on a schematic potential model, that originates from the work of Prakash et. al. [1], which reproduce the results of most microscopic calculations. The equations of state are used as input for solving the Tolman- Oppenheimer-Volkov equations for corresponding neutron stars. The potential part contribution of the symmetry energy to the total energy is parameterized in a generalized form both for low and high values of the baryon density. The obtained nuclear equations of state are applied for the systematic study of the global properties of a neutron star (masses, radii and composition). We also address on the problem of the existence of correlation between the pressure near the saturation density and the radius.


2020 ◽  
Vol 498 (1) ◽  
pp. 344-354 ◽  
Author(s):  
J-B Wei ◽  
G F Burgio ◽  
H-J Schulze ◽  
D Zappalà

ABSTRACT We model the cooling of hybrid neutron stars combining a microscopic nuclear equation of state in the Brueckner–Hartree–Fock approach with different quark models. We then analyse the neutron star cooling curves predicted by the different models and single out the preferred ones. We find that the possibility of neutron p-wave pairing can be excluded in our scenario.


2010 ◽  
Vol 19 (08n09) ◽  
pp. 1705-1711
Author(s):  
JUN XU ◽  
CHE MING KO ◽  
LIE-WEN CHEN ◽  
BAO-AN LI ◽  
HONG-RU MA

Using the nuclear symmetry energy that has been recently constrained by the isospin diffusion data in intermediate-energy heavy ion collisions, we have studied the transition density and pressure at the inner edge of neutron star crusts, and they are found to be 0.040 fm -3 ≤ ρt ≤ 0.065 fm -3 and 0.01 MeV / fm 3 ≤ Pt ≤ 0.26 MeV / fm 3, respectively, in both the dynamical and thermodynamical approaches. We have also found that the widely used parabolic approximation to the equation of state of asymmetric nuclear matter gives significantly higher values of core-crust transition density and pressure, especially for stiff symmetry energies. With these newly determined transition density and pressure, we have obtained an improved relation between the mass and radius of neutron stars.


2017 ◽  
Vol 26 (04) ◽  
pp. 1750015 ◽  
Author(s):  
Yeunhwan Lim ◽  
Chang Ho Hyun ◽  
Chang-Hwan Lee

In this paper, we investigate the cooling of neutron stars with relativistic and nonrelativistic models of dense nuclear matter. We focus on the effects of uncertainties originated from the nuclear models, the composition of elements in the envelope region, and the formation of superfluidity in the core and the crust of neutron stars. Discovery of [Formula: see text] neutron stars PSR J1614−2230 and PSR J0343[Formula: see text]0432 has triggered the revival of stiff nuclear equation of state at high densities. In the meantime, observation of a neutron star in Cassiopeia A for more than 10 years has provided us with very accurate data for the thermal evolution of neutron stars. Both mass and temperature of neutron stars depend critically on the equation of state of nuclear matter, so we first search for nuclear models that satisfy the constraints from mass and temperature simultaneously within a reasonable range. With selected models, we explore the effects of element composition in the envelope region, and the existence of superfluidity in the core and the crust of neutron stars. Due to uncertainty in the composition of particles in the envelope region, we obtain a range of cooling curves that can cover substantial region of observation data.


2018 ◽  
Vol 620 ◽  
pp. A69 ◽  
Author(s):  
B. Haskell ◽  
J. L. Zdunik ◽  
M. Fortin ◽  
M. Bejger ◽  
R. Wijnands ◽  
...  

Context. Rapidly rotating neutron stars are an ideal laboratory to test models of matter at high densities. In particular, the maximum rotation frequency of a neutron star depends on the equation of state and can be used to test models of the interior. However, observations of the spin distribution of rapidly rotating neutron stars show evidence for a lack of stars spinning at frequencies higher than f ≈ 700 Hz, well below the predictions of theoretical equations of state. This has generally been taken as evidence of an additional spin-down torque operating in these systems, and it has been suggested that gravitational wave torques may be operating and be linked to a potentially observable signal. Aims. We aim to determine whether additional spin-down torques (possibly due to gravitational wave emission) are necessary, or if the observed limit of f ≈ 700 Hz could correspond to the Keplerian (mass-shedding) break-up frequency for the observed systems, and is simply a consequence of the currently unknown state of matter at high densities. Methods. Given our ignorance with regard to the true equation of state of matter above nuclear saturation densities, we make a minimal physical assumption and only demand causality, that is, that the speed of sound in the interior of the neutron star should be lower than or equal to the speed of light c. We then connected our causally limited equation of state to a realistic microphysical crustal equation of state for densities below nuclear saturation density. This produced a limiting model that gave the lowest possible maximum frequency, which we compared to observational constraints on neutron star masses and frequencies. We also compared our findings with the constraints on the tidal deformability obtained in the observations of the GW170817 event. Results. We rule out centrifugal breakup as the mechanism preventing pulsars from spinning faster than f ≈ 700 Hz, as the lowest breakup frequency allowed by our causal equation of state is f ≈ 1200 Hz. A low-frequency cutoff, around f ≈ 800 Hz could only be possible when we assume that these systems do not contain neutron stars with masses above M ≈ 2 M⊙. This would have to be due either to selection effects, or possibly to a phase transition in the interior of the neutron star that leads to softening at high densities and a collapse to either a black hole or a hybrid star above M ≈ 2 M⊙. Such a scenario would, however, require a somewhat unrealistically stiff equation of state for hadronic matter, in tension with recent constraints obtained from gravitational wave observations of a neutron star merger.


2021 ◽  
Vol 252 ◽  
pp. 05004
Author(s):  
Polychronis Koliogiannis ◽  
Charalampos Moustakidis

The knowledge of the equation of state is a key ingredient for many dynamical phenomena that depend sensitively on the hot and dense nuclear matter, such as the formation of protoneutron stars and hot neutron stars. In order to accurately describe them, we construct equations of state at FInite temperature and entropy per baryon for matter with varying proton fractions. This procedure is based on the momentum dependent interaction model and state-of-the-art microscopic data. In addition, we investigate the role of thermal and rotation effects on microscopic and macroscopic properties of neutron stars, including the mass and radius, the frequency, the Kerr parameter, the central baryon density, etc. The latter is also connected to the hot and rapidly rotating remnant after neutron star merger. The interplay between these quantities and data from late observations of neutron stars, both isolated and in matter of merging, could provide useful insight and robust constraints on the equation of state of nuclear matter.


Author(s):  
Akira Dohi ◽  
Ken’ichiro Nakazato ◽  
Masa-aki Hashimoto ◽  
Matsuo Yasuhide ◽  
Tsuneo Noda

Abstract Whether fast cooling processes occur or not is crucial for the thermal evolution of neutron stars. In particular, the threshold of the direct Urca process, which is one of the fast cooling processes, is determined by the interior proton fraction $Y_p$, or the nuclear symmetry energy. Since recent observations indicate the small radius of neutron stars, a low value is preferred for the symmetry energy. In this study, simulations of neutron star cooling are performed adopting three models for the equation of state (EoS): Togashi, Shen, and LS220 EoSs. The Togashi EoS has been recently constructed with realistic nuclear potentials under finite temperature, and found to account for the small radius of neutron stars. As a result, we find that, since the direct Urca process is forbidden, the neutron star cooling is slow with use of the Togashi EoS. This is because the symmetry energy of Togashi EoS is lower than those of other EoSs. Hence, in order to account for observed age and surface temperature of isolated neutron stars with the use of the Togashi EoS, other fast cooling processes are needed regardless of the surface composition.


Sign in / Sign up

Export Citation Format

Share Document