scholarly journals Gravitational-Wave Asteroseismology as a Tool to Reveal the Equation of State of Relativistic Neutron Stars

2002 ◽  
Vol 185 ◽  
pp. 612-615
Author(s):  
Johannes Ruoff

AbstractThe equation of state (EOS) is still the big unknown in the physics of neutron stars. An accurate measurement of both the mass and the radius of a neutron star would put severe constraints on the range of possible EOSs. I discuss how the parameters of the oscillation modes of a neutron star, measured from the emitted gravitational waves, can in principle be used to infer its mass and radius, and thus reveal its EOS.

2005 ◽  
Vol 20 (31) ◽  
pp. 2335-2349 ◽  
Author(s):  
OMAR BENHAR

The EOS of strongly interacting matter at densities ten to fifteen orders of magnitude larger than the typical density of terrestrial macroscopic objects determines a number of neutron star properties, including the pattern of gravitational waves emitted following the excitation of nonradial oscillation modes. This paper reviews some of the approaches employed to model neutron star matter, as well as the prospects for obtaining new insights from the experimental study of gravitational waves emitted by neutron stars.


Author(s):  
Luca Baiotti

AbstractI review the current global status of research on gravitational waves emitted from mergers of binary neutron star systems, focusing on general-relativistic simulations and their use to interpret data from the gravitational-wave detectors, especially in relation to the equation of state of compact stars.


2018 ◽  
Vol 620 ◽  
pp. A69 ◽  
Author(s):  
B. Haskell ◽  
J. L. Zdunik ◽  
M. Fortin ◽  
M. Bejger ◽  
R. Wijnands ◽  
...  

Context. Rapidly rotating neutron stars are an ideal laboratory to test models of matter at high densities. In particular, the maximum rotation frequency of a neutron star depends on the equation of state and can be used to test models of the interior. However, observations of the spin distribution of rapidly rotating neutron stars show evidence for a lack of stars spinning at frequencies higher than f ≈ 700 Hz, well below the predictions of theoretical equations of state. This has generally been taken as evidence of an additional spin-down torque operating in these systems, and it has been suggested that gravitational wave torques may be operating and be linked to a potentially observable signal. Aims. We aim to determine whether additional spin-down torques (possibly due to gravitational wave emission) are necessary, or if the observed limit of f ≈ 700 Hz could correspond to the Keplerian (mass-shedding) break-up frequency for the observed systems, and is simply a consequence of the currently unknown state of matter at high densities. Methods. Given our ignorance with regard to the true equation of state of matter above nuclear saturation densities, we make a minimal physical assumption and only demand causality, that is, that the speed of sound in the interior of the neutron star should be lower than or equal to the speed of light c. We then connected our causally limited equation of state to a realistic microphysical crustal equation of state for densities below nuclear saturation density. This produced a limiting model that gave the lowest possible maximum frequency, which we compared to observational constraints on neutron star masses and frequencies. We also compared our findings with the constraints on the tidal deformability obtained in the observations of the GW170817 event. Results. We rule out centrifugal breakup as the mechanism preventing pulsars from spinning faster than f ≈ 700 Hz, as the lowest breakup frequency allowed by our causal equation of state is f ≈ 1200 Hz. A low-frequency cutoff, around f ≈ 800 Hz could only be possible when we assume that these systems do not contain neutron stars with masses above M ≈ 2 M⊙. This would have to be due either to selection effects, or possibly to a phase transition in the interior of the neutron star that leads to softening at high densities and a collapse to either a black hole or a hybrid star above M ≈ 2 M⊙. Such a scenario would, however, require a somewhat unrealistically stiff equation of state for hadronic matter, in tension with recent constraints obtained from gravitational wave observations of a neutron star merger.


2004 ◽  
Vol 13 (07) ◽  
pp. 1293-1296 ◽  
Author(s):  
GUILHERME F. MARRANGHELLO ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
JOSÉ A. de FREITAS PACHECO ◽  
MANFRED DILLIG ◽  
HÉLIO T. COELHO

We discuss, in this work, new aspects related to the emission of gravitational waves by neutron stars, which undergo a phase transition, from nuclear to quark matter, in its inner core. Such a phase transition would liberate around 1052–53 erg of energy in the form of gravitational waves which, if detected, may shed some light in the structure of these compact objects and provide new insights on the equation of state of nuclear matter.


2020 ◽  
Vol 493 (4) ◽  
pp. 5408-5412 ◽  
Author(s):  
Eric Thrane ◽  
Stefan Osłowski ◽  
Paul D Lasky

ABSTRACT Recent work highlights that tens of Galactic double neutron stars are likely to be detectable in the millihertz band of the space-based gravitational-wave observatory, LISA, some of which might be detectable as radio pulsars using the Square Kilometer Array (SKA). We point out that the joint LISA + SKA detection of a fgw ≳ 1 mHz binary, corresponding to a binary period of ≲400 s, would enable precision measurements of ultrarelativistic phenomena. We show that, given plausible assumptions, multimessenger observations of ultrarelativistic binaries can be used to constrain the neutron star equation of state with remarkable fidelity. It may be possible to measure the mass–radius relation with a precision of ≈0.2 per cent after 10 yr of observations with the SKA. Such a measurement would be roughly an order of magnitude more precise than possible with other proposed observations. We summarize some of the other remarkable science made possible with multimessenger observations of millihertz binaries, and discuss the prospects for the detection of such objects.


Author(s):  
Paul D. Lasky

AbstractNeutron stars are excellent emitters of gravitational waves. Squeezing matter beyond nuclear densities invites exotic physical processes, many of which violently transfer large amounts of mass at relativistic velocities, disrupting spacetime and generating copious quantities of gravitational radiation. I review mechanisms for generating gravitational waves with neutron stars. This includes gravitational waves from radio and millisecond pulsars, magnetars, accreting systems, and newly born neutron stars, with mechanisms including magnetic and thermoelastic deformations, various stellar oscillation modes, and core superfluid turbulence. I also focus on what physics can be learnt from a gravitational wave detection, and where additional research is required to fully understand the dominant physical processes at play.


2015 ◽  
Vol 92 (2) ◽  
Author(s):  
M. Agathos ◽  
J. Meidam ◽  
W. Del Pozzo ◽  
T. G. F. Li ◽  
M. Tompitak ◽  
...  

Author(s):  
K. Ackley ◽  
V. B. Adya ◽  
P. Agrawal ◽  
P. Altin ◽  
G. Ashton ◽  
...  

Abstract Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.


2017 ◽  
Vol 26 (01n02) ◽  
pp. 1740015 ◽  
Author(s):  
Chang-Hwan Lee

With H. A. Bethe, G. E. Brown worked on the merger rate of neutron star binaries for the gravitational wave detection. Their prediction has to be modified significantly due to the observations of [Formula: see text] neutron stars and the detection of gravitational waves. There still, however, remains a possibility that neutron star-low mass black hole binaries are significant sources of gravitational waves for the ground-based detectors. In this paper, I review the evolution of neutron star binaries with super-Eddington accretion and discuss the future prospect.


Sign in / Sign up

Export Citation Format

Share Document