scholarly journals Neural network reconstruction of the dense matter equation of state derived from the parameters of neutron stars

2020 ◽  
Vol 642 ◽  
pp. A78 ◽  
Author(s):  
F. Morawski ◽  
M. Bejger

Context. Neutron stars are currently studied with an rising number of electromagnetic and gravitational-wave observations, which will ultimately allow us to constrain the dense matter equation of state and understand the physical processes at work within these compact objects. Neutron star global parameters, such as the mass and radius, can be used to obtain the equation of state by directly inverting the Tolman-Oppenheimer-Volkoff equations. Here, we investigate an alternative approach to this procedure. Aims. The aim of this work is to study the application of the artificial neural networks guided by the autoencoder architecture as a method for precisely reconstructing the neutron star equation of state, using their observable parameters: masses, radii, and tidal deformabilities. In addition, we study how well the neutron star radius can be reconstructed using only the gravitational-wave observations of tidal deformability, that is, using quantities that are not related in any straightforward way. Methods. The application of an artificial neural network in the equation-of-state reconstruction exploits the non-linear potential of this machine learning model. Since each neuron in the network is basically a non-linear function, it is possible to create a complex mapping between the input sets of observations and the output equation-of-state table. Within the supervised training paradigm, we construct a few hidden-layer deep neural networks on a generated data set, consisting of a realistic equation of state for the neutron star crust connected with a piecewise relativistic polytropes dense core, with its parameters representative of state-of-the art realistic equations of state. Results. We demonstrate the performance of our machine-learning implementation with respect to the simulated cases with a varying number of observations and measurement uncertainties. Furthermore, we study the impact of the neutron star mass distributions on the results. Finally, we test the reconstruction of the equation of state trained on parametric polytropic training set using the simulated mass–radius and mass–tidal-deformability sequences based on realistic equations of state. Neural networks trained with a limited data set are capable of generalising the mapping between global parameters and equation-of-state input tables for realistic models.

2021 ◽  
Vol 252 ◽  
pp. 05004
Author(s):  
Polychronis Koliogiannis ◽  
Charalampos Moustakidis

The knowledge of the equation of state is a key ingredient for many dynamical phenomena that depend sensitively on the hot and dense nuclear matter, such as the formation of protoneutron stars and hot neutron stars. In order to accurately describe them, we construct equations of state at FInite temperature and entropy per baryon for matter with varying proton fractions. This procedure is based on the momentum dependent interaction model and state-of-the-art microscopic data. In addition, we investigate the role of thermal and rotation effects on microscopic and macroscopic properties of neutron stars, including the mass and radius, the frequency, the Kerr parameter, the central baryon density, etc. The latter is also connected to the hot and rapidly rotating remnant after neutron star merger. The interplay between these quantities and data from late observations of neutron stars, both isolated and in matter of merging, could provide useful insight and robust constraints on the equation of state of nuclear matter.


2018 ◽  
Vol 616 ◽  
pp. A105 ◽  
Author(s):  
M. Sieniawska ◽  
M. Bejger ◽  
B. Haskell

Context. Observations of heavy (⋍2 M⊙) neutron stars, such as PSR J1614−2230 and PSR J0348+0432, in addition to the recent measurement of tidal deformability from the binary neutron-star merger GW170817, place interesting constraints on theories of dense matter. Currently operating and future observatories, such as the Neutron star Interior Composition Explorer (NICER) and the Advanced Telescope for High ENergy Astrophysics (ATHENA), are expected to collect information on the global parameters of neutron stars, namely masses and radii, with an accuracy of a few percent. Such accuracy will allow for precise comparisons of measurements to models of compact objects and significantly improve our understanding of the physics of dense matter. Aims. The dense-matter equation of state is still largely unknown. We investigate how the accuracy of measurements expected from the NICER and ATHENA missions will improve our understanding of the dense-matter interior of neutron stars. Methods. We compared global parameters of stellar configurations obtained using three different equations of state: a reference (SLy4 EOS) and two piecewise polytropes manufactured to produce mass-radius relations indistinguishable from an observational point of view, i.e. within the predicted error of radius measurement. We assumed observational errors on the radius determination corresponding to the accuracies expected for the NICER and ATHENA missions. The effect of rotation was examined using high-precision numerical relativity computations. Because masses and rotational frequencies might be determined very precisely in the most optimistic scenario, only the influence of observational errors on radius measurements was investigated. Results. We show that ±5% errors in radius measurement lead to ~10% and ~40% accuracy in central parameter estimations for low-mass and high-mass neutron stars, respectively. Global parameters, such as oblateness and surface area, can be established with 8–10% accuracy, even if only compactness (instead of mass and radius) is measured. We also report on the range of tidal deformabilities corresponding to the estimated masses of GW170817 for the assumed uncertainty in radius.


2018 ◽  
Vol 620 ◽  
pp. A69 ◽  
Author(s):  
B. Haskell ◽  
J. L. Zdunik ◽  
M. Fortin ◽  
M. Bejger ◽  
R. Wijnands ◽  
...  

Context. Rapidly rotating neutron stars are an ideal laboratory to test models of matter at high densities. In particular, the maximum rotation frequency of a neutron star depends on the equation of state and can be used to test models of the interior. However, observations of the spin distribution of rapidly rotating neutron stars show evidence for a lack of stars spinning at frequencies higher than f ≈ 700 Hz, well below the predictions of theoretical equations of state. This has generally been taken as evidence of an additional spin-down torque operating in these systems, and it has been suggested that gravitational wave torques may be operating and be linked to a potentially observable signal. Aims. We aim to determine whether additional spin-down torques (possibly due to gravitational wave emission) are necessary, or if the observed limit of f ≈ 700 Hz could correspond to the Keplerian (mass-shedding) break-up frequency for the observed systems, and is simply a consequence of the currently unknown state of matter at high densities. Methods. Given our ignorance with regard to the true equation of state of matter above nuclear saturation densities, we make a minimal physical assumption and only demand causality, that is, that the speed of sound in the interior of the neutron star should be lower than or equal to the speed of light c. We then connected our causally limited equation of state to a realistic microphysical crustal equation of state for densities below nuclear saturation density. This produced a limiting model that gave the lowest possible maximum frequency, which we compared to observational constraints on neutron star masses and frequencies. We also compared our findings with the constraints on the tidal deformability obtained in the observations of the GW170817 event. Results. We rule out centrifugal breakup as the mechanism preventing pulsars from spinning faster than f ≈ 700 Hz, as the lowest breakup frequency allowed by our causal equation of state is f ≈ 1200 Hz. A low-frequency cutoff, around f ≈ 800 Hz could only be possible when we assume that these systems do not contain neutron stars with masses above M ≈ 2 M⊙. This would have to be due either to selection effects, or possibly to a phase transition in the interior of the neutron star that leads to softening at high densities and a collapse to either a black hole or a hybrid star above M ≈ 2 M⊙. Such a scenario would, however, require a somewhat unrealistically stiff equation of state for hadronic matter, in tension with recent constraints obtained from gravitational wave observations of a neutron star merger.


Universe ◽  
2019 ◽  
Vol 5 (10) ◽  
pp. 204 ◽  
Author(s):  
Domenico Logoteta ◽  
Ignazio Bombaci

We discuss the constraints on the equation of state (EOS) of neutron star matter obtained by the data analysis of the neutron star-neutron star merger in the event GW170807. To this scope, we consider two recent microscopic EOS models computed starting from two-body and three-body nuclear interactions derived using chiral perturbation theory. For comparison, we also use three representative phenomenological EOS models derived within the relativistic mean field approach. For each model, we determine the β -stable EOS and then the corresponding neutron star structure by solving the equations of hydrostatic equilibrium in general relativity. In addition, we calculate the tidal deformability parameters for the two neutron stars and discuss the results of our calculations in connection with the constraints obtained from the gravitational wave signal in GW170817. We find that the tidal deformabilities and radii for the binary’s component neutron stars in GW170817, calculated using a recent microscopic EOS model proposed by the present authors, are in very good agreement with those derived by gravitational waves data.


Author(s):  
M. Fortin ◽  
M. Oertel ◽  
C. Providência

AbstractFor core-collapse and neutron star merger simulations, it is important to have adequate equations of state which describe dense and hot matter as realistically as possible. We present two newly constructed equations of state including the entire baryon octet, compatible with the main constraints coming from nuclear physics, both experimental and theoretical. One of the equations of state describes cold β-equilibrated neutron stars with a maximum mass of 2 Msun. Results obtained with the new equations of state are compared with the ones of DD2Y, the only existing equation of state containing the baryon octet and satisfying the above constraints. The main difference between our new equations of state and DD2Y is the harder symmetry energy of the latter. We show that the density dependence of the symmetry energy has a direct influence on the amount of strangeness inside hot and dense matter and, consequently, on thermodynamic quantities. We expect that these differences affect the evolution of a proto-neutron star or binary neutron star mergers. We propose also several parameterisations based on the DD2 and SFHo models calibrated to Lambda hypernuclei that satisfy the different constraints.


2018 ◽  
Vol 27 (16) ◽  
pp. 1950002 ◽  
Author(s):  
Zeinab Rezaei

The dark matter (DM) in neutron stars can exist from the lifetime of the progenitor or when captured by this compact object. The properties of DM that enter the neutron stars through each step could be different from each other. Here, we investigate the structure of neutron stars which are influenced by the DM in two processes. Applying a generalization of two-fluid formalism to three-fluid one and the equation-of-state from the rotational curves of galaxies, we explore the structure of double DM admixed neutron stars. The behavior of the neutron and DM portions for these stars is considered. In addition, the influence of the DM equations of state on the stars with different contributions of visible and DM are studied. The gravitational redshift of these stars in different cases of DM equations of state is investigated.


2021 ◽  
Vol 252 ◽  
pp. 05005
Author(s):  
Alkiviadis Kanakis-Pegios ◽  
Polychronis Koliogiannis ◽  
Charalampos Moustakidis

One of the greatest interest and open problems in nuclear physics is the upper limit of the speed of sound in dense nuclear matter. Neutron stars, both in isolated and binary system cases, constitute a very promising natural laboratory for studying this kind of problem. This present work is based on one of our recent study, regarding the speed of sound and possible constraints that we can obtain from neutron stars. To be more specific, in the core of our study lies the examination of the speed of sound through the measured tidal deformability of a binary neutron star system (during the inspiral phase). The relation between the maximum neutron star mass scenario and the possible upper bound on the speed of sound is investigated. The approach that we used follows the contradiction between the recent observations of binary neutron star systems, in which the effective tidal deformability favors softer equations of state, while the high measured masses of isolated neutron stars favor stiffer equations of state. In our approach, we parametrized the stiffness of the equation of state by using the speed of sound. Moreover, we used the two recent observations of binary neutron star mergers from LIGO/VIRGO, so that we can impose robust constraints on the speed of sound. Furthermore, we postulate the kind of future measurements that could be helpful by imposing more stringent constraints on the equation of state.


Author(s):  
J.M. Lattimer

Neutron stars provide a window into the properties of dense nuclear matter. Several recent observational and theoretical developments provide powerful constraints on their structure and internal composition. Among these are the first observed binary neutron star merger, GW170817, whose gravitational radiation was accompanied by electromagnetic radiation from a short γ-ray burst and an optical afterglow believed to be due to the radioactive decay of newly minted heavy r-process nuclei. These observations give important constraints on the radii of typical neutron stars and on the upper limit to the neutron star maximum mass and complement recent pulsar observations that established a lower limit. Pulse-profile observations by the Neutron Star Interior Composition Explorer (NICER) X-ray telescope provide an independent, consistent measure of the neutron star radius. Theoretical many-body studies of neutron matter reinforce these estimates of neutron star radii. Studies using parameterized dense matter equations of state (EOSs) reveal several EOS-independent relations connecting global neutron star properties. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2019 ◽  
Vol 21 ◽  
pp. 44
Author(s):  
Ch. C. Moustakidis

We study the effect of nuclear equation of state on the tidal polarizability of neutron stars. The predicted equations of state for the β-stable nuclear matter are parameterized by varying the slope L of the symmetry energy at saturation density on the interval 65 MeV≤L≤115 MeV. The effects of the density dependence of the nuclear symmetry energy on the neutron star tidal polarizability are presented and analyzed. A comparison of theoretical predictions with the recent observation predictions is also performed and analyzed.


2020 ◽  
Vol 498 (1) ◽  
pp. 344-354 ◽  
Author(s):  
J-B Wei ◽  
G F Burgio ◽  
H-J Schulze ◽  
D Zappalà

ABSTRACT We model the cooling of hybrid neutron stars combining a microscopic nuclear equation of state in the Brueckner–Hartree–Fock approach with different quark models. We then analyse the neutron star cooling curves predicted by the different models and single out the preferred ones. We find that the possibility of neutron p-wave pairing can be excluded in our scenario.


Sign in / Sign up

Export Citation Format

Share Document